Properties

Label 30258.f
Number of curves $4$
Conductor $30258$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("f1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 30258.f have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1\)
\(41\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 - 2 T + 5 T^{2}\) 1.5.ac
\(7\) \( 1 + 4 T + 7 T^{2}\) 1.7.e
\(11\) \( 1 + 4 T + 11 T^{2}\) 1.11.e
\(13\) \( 1 + 2 T + 13 T^{2}\) 1.13.c
\(17\) \( 1 - 2 T + 17 T^{2}\) 1.17.ac
\(19\) \( 1 - 4 T + 19 T^{2}\) 1.19.ae
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 30258.f do not have complex multiplication.

Modular form 30258.2.a.f

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{4} + 2 q^{5} - 4 q^{7} - q^{8} - 2 q^{10} - 4 q^{11} - 2 q^{13} + 4 q^{14} + q^{16} + 2 q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 30258.f

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
30258.f1 30258g4 \([1, -1, 0, -6641946, 6589902874]\) \(9357915116017/538002\) \(1863007309180665378\) \([2]\) \(1290240\) \(2.5692\)  
30258.f2 30258g2 \([1, -1, 0, -439056, 90514732]\) \(2703045457/544644\) \(1886007399417463716\) \([2, 2]\) \(645120\) \(2.2227\)  
30258.f3 30258g1 \([1, -1, 0, -136476, -18111488]\) \(81182737/5904\) \(20444524654931856\) \([2]\) \(322560\) \(1.8761\) \(\Gamma_0(N)\)-optimal
30258.f4 30258g3 \([1, -1, 0, 922554, 539573710]\) \(25076571983/50863698\) \(-176132135467819805922\) \([2]\) \(1290240\) \(2.5692\)