Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2=x^3+81x-54\)
|
(homogenize, simplify) |
\(y^2z=x^3+81xz^2-54z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3+81x-54\)
|
(homogenize, minimize) |
Mordell-Weil group structure
trivial
Invariants
Conductor: | $N$ | = | \( 3024 \) | = | $2^{4} \cdot 3^{3} \cdot 7$ |
|
Discriminant: | $\Delta$ | = | $-35271936$ | = | $-1 \cdot 2^{8} \cdot 3^{9} \cdot 7 $ |
|
j-invariant: | $j$ | = | \( \frac{11664}{7} \) | = | $2^{4} \cdot 3^{6} \cdot 7^{-1}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $0.13749625238525100134943301102$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-1.1485610844891281401418223310$ |
|
||
$abc$ quality: | $Q$ | ≈ | $0.8915192755066496$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $3.094074332490689$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
Mordell-Weil rank: | $r$ | = | $ 0$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
Real period: | $\Omega$ | ≈ | $1.2019563761355793849116009441$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 1 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
Special value: | $ L(E,1)$ | ≈ | $1.2019563761355793849116009441 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) |
|
BSD formula
$$\begin{aligned} 1.201956376 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 1.201956 \cdot 1.000000 \cdot 1}{1^2} \\ & \approx 1.201956376\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 864 |
|
$ \Gamma_0(N) $-optimal: | yes | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 3 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $1$ | $I_0^{*}$ | additive | -1 | 4 | 8 | 0 |
$3$ | $1$ | $IV^{*}$ | additive | 1 | 3 | 9 | 0 |
$7$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$3$ | 3B | 3.4.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 84 = 2^{2} \cdot 3 \cdot 7 \), index $16$, genus $0$, and generators
$\left(\begin{array}{rr} 73 & 6 \\ 51 & 19 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 6 & 1 \end{array}\right),\left(\begin{array}{rr} 4 & 3 \\ 9 & 7 \end{array}\right),\left(\begin{array}{rr} 79 & 6 \\ 78 & 7 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right),\left(\begin{array}{rr} 41 & 78 \\ 39 & 65 \end{array}\right),\left(\begin{array}{rr} 46 & 33 \\ 83 & 62 \end{array}\right),\left(\begin{array}{rr} 1 & 6 \\ 0 & 1 \end{array}\right)$.
The torsion field $K:=\Q(E[84])$ is a degree-$580608$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/84\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | additive | $2$ | \( 189 = 3^{3} \cdot 7 \) |
$3$ | additive | $2$ | \( 56 = 2^{3} \cdot 7 \) |
$7$ | nonsplit multiplicative | $8$ | \( 432 = 2^{4} \cdot 3^{3} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
3.
Its isogeny class 3024.e
consists of 2 curves linked by isogenies of
degree 3.
Twists
The minimal quadratic twist of this elliptic curve is 756.a2, its twist by $-4$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{-1}) \) | \(\Z/3\Z\) | not in database |
$3$ | 3.1.756.1 | \(\Z/2\Z\) | not in database |
$6$ | 6.0.48009024.1 | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$6$ | 6.2.16595712.3 | \(\Z/3\Z\) | not in database |
$6$ | 6.0.2286144.1 | \(\Z/6\Z\) | not in database |
$12$ | deg 12 | \(\Z/4\Z\) | not in database |
$12$ | 12.0.275417656786944.1 | \(\Z/3\Z \oplus \Z/3\Z\) | not in database |
$12$ | 12.0.2304866385432576.2 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$18$ | 18.0.130650746468473471744132905959424.2 | \(\Z/9\Z\) | not in database |
$18$ | 18.2.119025168578031262646195453952.1 | \(\Z/6\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | add | add | ord | nonsplit | ord | ord | ord | ord | ord | ord | ord | ord | ord | ord | ord |
$\lambda$-invariant(s) | - | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 |
$\mu$-invariant(s) | - | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.