Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
Weierstrass coefficients |
Weierstrass equation |
3024.a1 |
3024v1 |
3024.a |
3024v |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{3} \cdot 7 \) |
\( - 2^{17} \cdot 3^{5} \cdot 7^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$0.076783829$ |
$1$ |
|
$12$ |
$10080$ |
$1.263514$ |
$38983348653/26353376$ |
$[0, 0, 0, 7053, 93490]$ |
\(y^2=x^3+7053x+93490\) |
3024.b1 |
3024l1 |
3024.b |
3024l |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{3} \cdot 7 \) |
\( - 2^{11} \cdot 3^{9} \cdot 7 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$0.164111269$ |
$1$ |
|
$8$ |
$1440$ |
$0.300941$ |
$-54/7$ |
$[0, 0, 0, -27, 810]$ |
\(y^2=x^3-27x+810\) |
3024.c1 |
3024r1 |
3024.c |
3024r |
$3$ |
$9$ |
\( 2^{4} \cdot 3^{3} \cdot 7 \) |
\( - 2^{14} \cdot 3^{3} \cdot 7 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$1$ |
$1$ |
|
$0$ |
$1728$ |
$0.485786$ |
$-11527859979/28$ |
$[0, 0, 0, -2259, -41326]$ |
\(y^2=x^3-2259x-41326\) |
3024.c2 |
3024r2 |
3024.c |
3024r |
$3$ |
$9$ |
\( 2^{4} \cdot 3^{3} \cdot 7 \) |
\( - 2^{18} \cdot 3^{9} \cdot 7^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.12.0.1 |
3Cs |
$1$ |
$1$ |
|
$0$ |
$5184$ |
$1.035093$ |
$-5000211/21952$ |
$[0, 0, 0, -1539, -68094]$ |
\(y^2=x^3-1539x-68094\) |
3024.c3 |
3024r3 |
3024.c |
3024r |
$3$ |
$9$ |
\( 2^{4} \cdot 3^{3} \cdot 7 \) |
\( - 2^{30} \cdot 3^{11} \cdot 7 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$1$ |
$1$ |
|
$0$ |
$15552$ |
$1.584398$ |
$381790581/1835008$ |
$[0, 0, 0, 13581, 1646514]$ |
\(y^2=x^3+13581x+1646514\) |
3024.d1 |
3024y2 |
3024.d |
3024y |
$2$ |
$3$ |
\( 2^{4} \cdot 3^{3} \cdot 7 \) |
\( 2^{8} \cdot 3^{5} \cdot 7^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1.175949099$ |
$1$ |
|
$4$ |
$864$ |
$0.222888$ |
$32710656/343$ |
$[0, 0, 0, -264, -1636]$ |
\(y^2=x^3-264x-1636\) |
3024.d2 |
3024y1 |
3024.d |
3024y |
$2$ |
$3$ |
\( 2^{4} \cdot 3^{3} \cdot 7 \) |
\( 2^{8} \cdot 3^{3} \cdot 7 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$0.391983033$ |
$1$ |
|
$4$ |
$288$ |
$-0.326418$ |
$221184/7$ |
$[0, 0, 0, -24, 44]$ |
\(y^2=x^3-24x+44\) |
3024.e1 |
3024q2 |
3024.e |
3024q |
$2$ |
$3$ |
\( 2^{4} \cdot 3^{3} \cdot 7 \) |
\( - 2^{8} \cdot 3^{11} \cdot 7^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1$ |
$1$ |
|
$0$ |
$2592$ |
$0.686803$ |
$-2431344/343$ |
$[0, 0, 0, -999, 13554]$ |
\(y^2=x^3-999x+13554\) |
3024.e2 |
3024q1 |
3024.e |
3024q |
$2$ |
$3$ |
\( 2^{4} \cdot 3^{3} \cdot 7 \) |
\( - 2^{8} \cdot 3^{9} \cdot 7 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1$ |
$1$ |
|
$0$ |
$864$ |
$0.137496$ |
$11664/7$ |
$[0, 0, 0, 81, -54]$ |
\(y^2=x^3+81x-54\) |
3024.f1 |
3024s3 |
3024.f |
3024s |
$3$ |
$9$ |
\( 2^{4} \cdot 3^{3} \cdot 7 \) |
\( 2^{12} \cdot 3^{11} \cdot 7 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$1$ |
$1$ |
|
$0$ |
$7776$ |
$1.251781$ |
$35184082944/7$ |
$[0, 0, 0, -61344, 5847984]$ |
\(y^2=x^3-61344x+5847984\) |
3024.f2 |
3024s2 |
3024.f |
3024s |
$3$ |
$9$ |
\( 2^{4} \cdot 3^{3} \cdot 7 \) |
\( 2^{12} \cdot 3^{9} \cdot 7^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.12.0.1 |
3Cs |
$1$ |
$1$ |
|
$0$ |
$2592$ |
$0.702476$ |
$884736/343$ |
$[0, 0, 0, -864, 5616]$ |
\(y^2=x^3-864x+5616\) |
3024.f3 |
3024s1 |
3024.f |
3024s |
$3$ |
$9$ |
\( 2^{4} \cdot 3^{3} \cdot 7 \) |
\( 2^{12} \cdot 3^{3} \cdot 7 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$1$ |
$1$ |
|
$0$ |
$864$ |
$0.153169$ |
$56623104/7$ |
$[0, 0, 0, -384, -2896]$ |
\(y^2=x^3-384x-2896\) |
3024.g1 |
3024b1 |
3024.g |
3024b |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{3} \cdot 7 \) |
\( 2^{8} \cdot 3^{9} \cdot 7^{5} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$3.647176246$ |
$1$ |
|
$2$ |
$2880$ |
$0.791799$ |
$36799488/16807$ |
$[0, 0, 0, -1188, -7236]$ |
\(y^2=x^3-1188x-7236\) |
3024.h1 |
3024c1 |
3024.h |
3024c |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{3} \cdot 7 \) |
\( - 2^{10} \cdot 3^{9} \cdot 7 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2.644224464$ |
$1$ |
|
$2$ |
$576$ |
$0.307331$ |
$-78732/7$ |
$[0, 0, 0, -243, -1566]$ |
\(y^2=x^3-243x-1566\) |
3024.i1 |
3024d1 |
3024.i |
3024d |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{3} \cdot 7 \) |
\( 2^{8} \cdot 3^{9} \cdot 7 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1$ |
$1$ |
|
$0$ |
$576$ |
$0.157960$ |
$27648/7$ |
$[0, 0, 0, -108, -324]$ |
\(y^2=x^3-108x-324\) |
3024.j1 |
3024k1 |
3024.j |
3024k |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{3} \cdot 7 \) |
\( - 2^{10} \cdot 3^{9} \cdot 7^{5} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$0.226528820$ |
$1$ |
|
$8$ |
$2880$ |
$0.894528$ |
$3217428/16807$ |
$[0, 0, 0, 837, -26406]$ |
\(y^2=x^3+837x-26406\) |
3024.k1 |
3024u1 |
3024.k |
3024u |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{3} \cdot 7 \) |
\( 2^{8} \cdot 3^{5} \cdot 7 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$0.186593485$ |
$1$ |
|
$6$ |
$288$ |
$-0.147499$ |
$196608/7$ |
$[0, 0, 0, -48, 124]$ |
\(y^2=x^3-48x+124\) |
3024.l1 |
3024bb1 |
3024.l |
3024bb |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{3} \cdot 7 \) |
\( 2^{12} \cdot 3^{5} \cdot 7 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1$ |
$1$ |
|
$0$ |
$480$ |
$0.002885$ |
$12288/7$ |
$[0, 0, 0, -48, -16]$ |
\(y^2=x^3-48x-16\) |
3024.m1 |
3024bc1 |
3024.m |
3024bc |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{3} \cdot 7 \) |
\( - 2^{14} \cdot 3^{5} \cdot 7 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1$ |
$1$ |
|
$0$ |
$576$ |
$0.107499$ |
$-3/28$ |
$[0, 0, 0, -3, -254]$ |
\(y^2=x^3-3x-254\) |
3024.n1 |
3024e1 |
3024.n |
3024e |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{3} \cdot 7 \) |
\( 2^{8} \cdot 3^{11} \cdot 7^{11} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1$ |
$1$ |
|
$0$ |
$31680$ |
$2.050678$ |
$116634423954432/1977326743$ |
$[0, 0, 0, -362988, -82933524]$ |
\(y^2=x^3-362988x-82933524\) |
3024.o1 |
3024w2 |
3024.o |
3024w |
$3$ |
$9$ |
\( 2^{4} \cdot 3^{3} \cdot 7 \) |
\( - 2^{13} \cdot 3^{5} \cdot 7 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$4.002123776$ |
$1$ |
|
$2$ |
$2592$ |
$0.887031$ |
$-545407363875/14$ |
$[0, 0, 0, -16995, -852766]$ |
\(y^2=x^3-16995x-852766\) |
3024.o2 |
3024w1 |
3024.o |
3024w |
$3$ |
$9$ |
\( 2^{4} \cdot 3^{3} \cdot 7 \) |
\( - 2^{15} \cdot 3^{3} \cdot 7^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.12.0.1 |
3Cs |
$1.334041258$ |
$1$ |
|
$4$ |
$864$ |
$0.337725$ |
$-7414875/2744$ |
$[0, 0, 0, -195, -1342]$ |
\(y^2=x^3-195x-1342\) |
3024.o3 |
3024w3 |
3024.o |
3024w |
$3$ |
$9$ |
\( 2^{4} \cdot 3^{3} \cdot 7 \) |
\( - 2^{21} \cdot 3^{9} \cdot 7 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$0.444680419$ |
$1$ |
|
$4$ |
$2592$ |
$0.887031$ |
$4492125/3584$ |
$[0, 0, 0, 1485, 13554]$ |
\(y^2=x^3+1485x+13554\) |
3024.p1 |
3024m3 |
3024.p |
3024m |
$3$ |
$9$ |
\( 2^{4} \cdot 3^{3} \cdot 7 \) |
\( - 2^{13} \cdot 3^{11} \cdot 7 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$1$ |
$1$ |
|
$0$ |
$7776$ |
$1.436337$ |
$-545407363875/14$ |
$[0, 0, 0, -152955, 23024682]$ |
\(y^2=x^3-152955x+23024682\) |
3024.p2 |
3024m2 |
3024.p |
3024m |
$3$ |
$9$ |
\( 2^{4} \cdot 3^{3} \cdot 7 \) |
\( - 2^{15} \cdot 3^{9} \cdot 7^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.12.0.1 |
3Cs |
$1$ |
$1$ |
|
$0$ |
$2592$ |
$0.887031$ |
$-7414875/2744$ |
$[0, 0, 0, -1755, 36234]$ |
\(y^2=x^3-1755x+36234\) |
3024.p3 |
3024m1 |
3024.p |
3024m |
$3$ |
$9$ |
\( 2^{4} \cdot 3^{3} \cdot 7 \) |
\( - 2^{21} \cdot 3^{3} \cdot 7 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$1$ |
$1$ |
|
$0$ |
$864$ |
$0.337725$ |
$4492125/3584$ |
$[0, 0, 0, 165, -502]$ |
\(y^2=x^3+165x-502\) |
3024.q1 |
3024a1 |
3024.q |
3024a |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{3} \cdot 7 \) |
\( - 2^{10} \cdot 3^{3} \cdot 7 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$0.551231115$ |
$1$ |
|
$4$ |
$192$ |
$-0.241976$ |
$-78732/7$ |
$[0, 0, 0, -27, 58]$ |
\(y^2=x^3-27x+58\) |
3024.r1 |
3024g1 |
3024.r |
3024g |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{3} \cdot 7 \) |
\( 2^{8} \cdot 3^{3} \cdot 7^{5} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1$ |
$1$ |
|
$0$ |
$960$ |
$0.242492$ |
$36799488/16807$ |
$[0, 0, 0, -132, 268]$ |
\(y^2=x^3-132x+268\) |
3024.s1 |
3024j1 |
3024.s |
3024j |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{3} \cdot 7 \) |
\( 2^{8} \cdot 3^{5} \cdot 7^{11} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$0.549407826$ |
$1$ |
|
$2$ |
$10560$ |
$1.501371$ |
$116634423954432/1977326743$ |
$[0, 0, 0, -40332, 3071612]$ |
\(y^2=x^3-40332x+3071612\) |
3024.t1 |
3024ba1 |
3024.t |
3024ba |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{3} \cdot 7 \) |
\( - 2^{14} \cdot 3^{11} \cdot 7 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1$ |
$1$ |
|
$0$ |
$1728$ |
$0.656805$ |
$-3/28$ |
$[0, 0, 0, -27, 6858]$ |
\(y^2=x^3-27x+6858\) |
3024.u1 |
3024t1 |
3024.u |
3024t |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{3} \cdot 7 \) |
\( 2^{12} \cdot 3^{11} \cdot 7 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$3.030766875$ |
$1$ |
|
$2$ |
$1440$ |
$0.552191$ |
$12288/7$ |
$[0, 0, 0, -432, 432]$ |
\(y^2=x^3-432x+432\) |
3024.v1 |
3024z1 |
3024.v |
3024z |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{3} \cdot 7 \) |
\( 2^{8} \cdot 3^{11} \cdot 7 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1$ |
$1$ |
|
$0$ |
$864$ |
$0.401807$ |
$196608/7$ |
$[0, 0, 0, -432, -3348]$ |
\(y^2=x^3-432x-3348\) |
3024.w1 |
3024h1 |
3024.w |
3024h |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{3} \cdot 7 \) |
\( - 2^{10} \cdot 3^{3} \cdot 7^{5} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$0.297908992$ |
$1$ |
|
$4$ |
$960$ |
$0.345222$ |
$3217428/16807$ |
$[0, 0, 0, 93, 978]$ |
\(y^2=x^3+93x+978\) |
3024.x1 |
3024i1 |
3024.x |
3024i |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{3} \cdot 7 \) |
\( 2^{8} \cdot 3^{3} \cdot 7 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1.084401280$ |
$1$ |
|
$2$ |
$192$ |
$-0.391346$ |
$27648/7$ |
$[0, 0, 0, -12, 12]$ |
\(y^2=x^3-12x+12\) |
3024.y1 |
3024x2 |
3024.y |
3024x |
$3$ |
$9$ |
\( 2^{4} \cdot 3^{3} \cdot 7 \) |
\( 2^{12} \cdot 3^{5} \cdot 7 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$7.035562408$ |
$1$ |
|
$0$ |
$2592$ |
$0.702476$ |
$35184082944/7$ |
$[0, 0, 0, -6816, -216592]$ |
\(y^2=x^3-6816x-216592\) |
3024.y2 |
3024x3 |
3024.y |
3024x |
$3$ |
$9$ |
\( 2^{4} \cdot 3^{3} \cdot 7 \) |
\( 2^{12} \cdot 3^{9} \cdot 7 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$0.781729156$ |
$1$ |
|
$2$ |
$2592$ |
$0.702476$ |
$56623104/7$ |
$[0, 0, 0, -3456, 78192]$ |
\(y^2=x^3-3456x+78192\) |
3024.y3 |
3024x1 |
3024.y |
3024x |
$3$ |
$9$ |
\( 2^{4} \cdot 3^{3} \cdot 7 \) |
\( 2^{12} \cdot 3^{3} \cdot 7^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.12.0.1 |
3Cs |
$2.345187469$ |
$1$ |
|
$2$ |
$864$ |
$0.153169$ |
$884736/343$ |
$[0, 0, 0, -96, -208]$ |
\(y^2=x^3-96x-208\) |
3024.z1 |
3024p2 |
3024.z |
3024p |
$2$ |
$3$ |
\( 2^{4} \cdot 3^{3} \cdot 7 \) |
\( - 2^{8} \cdot 3^{5} \cdot 7^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1$ |
$1$ |
|
$0$ |
$864$ |
$0.137496$ |
$-2431344/343$ |
$[0, 0, 0, -111, -502]$ |
\(y^2=x^3-111x-502\) |
3024.z2 |
3024p1 |
3024.z |
3024p |
$2$ |
$3$ |
\( 2^{4} \cdot 3^{3} \cdot 7 \) |
\( - 2^{8} \cdot 3^{3} \cdot 7 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1$ |
$1$ |
|
$0$ |
$288$ |
$-0.411810$ |
$11664/7$ |
$[0, 0, 0, 9, 2]$ |
\(y^2=x^3+9x+2\) |
3024.ba1 |
3024n2 |
3024.ba |
3024n |
$2$ |
$3$ |
\( 2^{4} \cdot 3^{3} \cdot 7 \) |
\( 2^{8} \cdot 3^{11} \cdot 7^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1$ |
$1$ |
|
$0$ |
$2592$ |
$0.772194$ |
$32710656/343$ |
$[0, 0, 0, -2376, 44172]$ |
\(y^2=x^3-2376x+44172\) |
3024.ba2 |
3024n1 |
3024.ba |
3024n |
$2$ |
$3$ |
\( 2^{4} \cdot 3^{3} \cdot 7 \) |
\( 2^{8} \cdot 3^{9} \cdot 7 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1$ |
$1$ |
|
$0$ |
$864$ |
$0.222888$ |
$221184/7$ |
$[0, 0, 0, -216, -1188]$ |
\(y^2=x^3-216x-1188\) |
3024.bb1 |
3024o3 |
3024.bb |
3024o |
$3$ |
$9$ |
\( 2^{4} \cdot 3^{3} \cdot 7 \) |
\( - 2^{14} \cdot 3^{9} \cdot 7 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$1$ |
$1$ |
|
$0$ |
$5184$ |
$1.035093$ |
$-11527859979/28$ |
$[0, 0, 0, -20331, 1115802]$ |
\(y^2=x^3-20331x+1115802\) |
3024.bb2 |
3024o1 |
3024.bb |
3024o |
$3$ |
$9$ |
\( 2^{4} \cdot 3^{3} \cdot 7 \) |
\( - 2^{18} \cdot 3^{3} \cdot 7^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.12.0.1 |
3Cs |
$1$ |
$1$ |
|
$0$ |
$1728$ |
$0.485786$ |
$-5000211/21952$ |
$[0, 0, 0, -171, 2522]$ |
\(y^2=x^3-171x+2522\) |
3024.bb3 |
3024o2 |
3024.bb |
3024o |
$3$ |
$9$ |
\( 2^{4} \cdot 3^{3} \cdot 7 \) |
\( - 2^{30} \cdot 3^{5} \cdot 7 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$1$ |
$1$ |
|
$0$ |
$5184$ |
$1.035093$ |
$381790581/1835008$ |
$[0, 0, 0, 1509, -60982]$ |
\(y^2=x^3+1509x-60982\) |
3024.bc1 |
3024f1 |
3024.bc |
3024f |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{3} \cdot 7 \) |
\( - 2^{11} \cdot 3^{3} \cdot 7 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1$ |
$1$ |
|
$0$ |
$480$ |
$-0.248365$ |
$-54/7$ |
$[0, 0, 0, -3, -30]$ |
\(y^2=x^3-3x-30\) |
3024.bd1 |
3024bd1 |
3024.bd |
3024bd |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{3} \cdot 7 \) |
\( - 2^{17} \cdot 3^{11} \cdot 7^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1$ |
$1$ |
|
$0$ |
$30240$ |
$1.812819$ |
$38983348653/26353376$ |
$[0, 0, 0, 63477, -2524230]$ |
\(y^2=x^3+63477x-2524230\) |