Properties

Label 302379.bi
Number of curves $4$
Conductor $302379$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bi1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 302379.bi have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(3\)\(1 + T\)
\(7\)\(1\)
\(11\)\(1\)
\(17\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 - T + 2 T^{2}\) 1.2.ab
\(5\) \( 1 + 2 T + 5 T^{2}\) 1.5.c
\(13\) \( 1 + 2 T + 13 T^{2}\) 1.13.c
\(19\) \( 1 - 8 T + 19 T^{2}\) 1.19.ai
\(23\) \( 1 + 8 T + 23 T^{2}\) 1.23.i
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 302379.bi do not have complex multiplication.

Modular form 302379.2.a.bi

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} - q^{3} - q^{4} - 2 q^{5} - q^{6} - 3 q^{8} + q^{9} - 2 q^{10} + q^{12} - 2 q^{13} + 2 q^{15} - q^{16} + q^{17} + q^{18} + 8 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 302379.bi

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
302379.bi1 302379bi4 \([1, 1, 0, -1079201, -430427136]\) \(666940371553/2756193\) \(574452305044641177\) \([2]\) \(5898240\) \(2.2630\)  
302379.bi2 302379bi2 \([1, 1, 0, -100916, 605235]\) \(545338513/314721\) \(65594899883990169\) \([2, 2]\) \(2949120\) \(1.9164\)  
302379.bi3 302379bi1 \([1, 1, 0, -71271, 7275360]\) \(192100033/561\) \(116924955229929\) \([2]\) \(1474560\) \(1.5698\) \(\Gamma_0(N)\)-optimal
302379.bi4 302379bi3 \([1, 1, 0, 403049, 5342506]\) \(34741712447/20160657\) \(-4201932116097958473\) \([2]\) \(5898240\) \(2.2630\)