Properties

Label 300352.bx
Number of curves $1$
Conductor $300352$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bx1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 300352.bx1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(13\)\(1 + T\)
\(19\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + 3 T^{2}\) 1.3.a
\(5\) \( 1 + 5 T^{2}\) 1.5.a
\(7\) \( 1 - 2 T + 7 T^{2}\) 1.7.ac
\(11\) \( 1 + 6 T + 11 T^{2}\) 1.11.g
\(17\) \( 1 - 5 T + 17 T^{2}\) 1.17.af
\(23\) \( 1 + 3 T + 23 T^{2}\) 1.23.d
\(29\) \( 1 + 29 T^{2}\) 1.29.a
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 300352.bx do not have complex multiplication.

Modular form 300352.2.a.bx

Copy content sage:E.q_eigenform(10)
 
\(q + 2 q^{7} - 3 q^{9} - 6 q^{11} - q^{13} + 5 q^{17} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 300352.bx

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
300352.bx1 300352bx1 \([0, 0, 0, -137180, 19808792]\) \(-864000/13\) \(-4295618632834048\) \([]\) \(1556480\) \(1.8028\) \(\Gamma_0(N)\)-optimal