Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2+xy+y=x^3+x+2\)
|
(homogenize, simplify) |
|
\(y^2z+xyz+yz^2=x^3+xz^2+2z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3+1917x+99198\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z/{6}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(3, 4)$ | $0$ | $6$ |
Integral points
\( \left(-1, 0\right) \), \( \left(0, 1\right) \), \( \left(0, -2\right) \), \( \left(3, 4\right) \), \( \left(3, -8\right) \)
Invariants
| Conductor: | $N$ | = | \( 30 \) | = | $2 \cdot 3 \cdot 5$ |
|
| Discriminant: | $\Delta$ | = | $-2160$ | = | $-1 \cdot 2^{4} \cdot 3^{3} \cdot 5 $ |
|
| j-invariant: | $j$ | = | \( \frac{357911}{2160} \) | = | $2^{-4} \cdot 3^{-3} \cdot 5^{-1} \cdot 71^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $-0.67828733967764847482561241836$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.67828733967764847482561241836$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $0.9968917246282063$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.419554787227392$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
| Mordell-Weil rank: | $r$ | = | $ 0$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
| Real period: | $\Omega$ | ≈ | $3.3519482592414964494482281339$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 6 $ = $ 2\cdot3\cdot1 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $6$ |
|
| Special value: | $ L(E,1)$ | ≈ | $0.55865804320691607490803802232 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) |
|
BSD formula
$$\begin{aligned} 0.558658043 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 3.351948 \cdot 1.000000 \cdot 6}{6^2} \\ & \approx 0.558658043\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
| Modular degree: | 2 |
|
| $ \Gamma_0(N) $-optimal: | yes | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is semistable. There are 3 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $2$ | $I_{4}$ | nonsplit multiplicative | 1 | 1 | 4 | 4 |
| $3$ | $3$ | $I_{3}$ | split multiplicative | -1 | 1 | 3 | 3 |
| $5$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2B | 8.12.0.12 |
| $3$ | 3B.1.1 | 3.8.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 120 = 2^{3} \cdot 3 \cdot 5 \), index $384$, genus $5$, and generators
$\left(\begin{array}{rr} 1 & 12 \\ 12 & 25 \end{array}\right),\left(\begin{array}{rr} 112 & 21 \\ 75 & 106 \end{array}\right),\left(\begin{array}{rr} 97 & 24 \\ 96 & 25 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 24 & 1 \end{array}\right),\left(\begin{array}{rr} 97 & 24 \\ 102 & 7 \end{array}\right),\left(\begin{array}{rr} 1 & 24 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 9 & 28 \\ 20 & 29 \end{array}\right),\left(\begin{array}{rr} 16 & 63 \\ 41 & 74 \end{array}\right),\left(\begin{array}{rr} 15 & 106 \\ 14 & 11 \end{array}\right)$.
The torsion field $K:=\Q(E[120])$ is a degree-$92160$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/120\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | nonsplit multiplicative | $4$ | \( 15 = 3 \cdot 5 \) |
| $3$ | split multiplicative | $4$ | \( 10 = 2 \cdot 5 \) |
| $5$ | nonsplit multiplicative | $6$ | \( 6 = 2 \cdot 3 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 3, 4, 6 and 12.
Its isogeny class 30.a
consists of 8 curves linked by isogenies of
degrees dividing 12.
Twists
This elliptic curve is its own minimal quadratic twist.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{6}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{-15}) \) | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $2$ | \(\Q(\sqrt{5}) \) | \(\Z/12\Z\) | 2.2.5.1-180.1-a2 |
| $2$ | \(\Q(\sqrt{-3}) \) | \(\Z/12\Z\) | 2.0.3.1-300.1-a2 |
| $4$ | \(\Q(\sqrt{-3}, \sqrt{5})\) | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
| $6$ | 6.0.270000.1 | \(\Z/3\Z \oplus \Z/12\Z\) | not in database |
| $8$ | 8.0.2916000000.3 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
| $8$ | 8.4.576000000.1 | \(\Z/24\Z\) | not in database |
| $8$ | 8.0.74649600.1 | \(\Z/24\Z\) | not in database |
| $9$ | 9.3.143489070000.1 | \(\Z/18\Z\) | not in database |
| $12$ | 12.0.1822500000000.1 | \(\Z/6\Z \oplus \Z/12\Z\) | not in database |
| $16$ | 16.0.8503056000000000000.1 | \(\Z/4\Z \oplus \Z/12\Z\) | not in database |
| $16$ | 16.0.26873856000000000000.3 | \(\Z/2\Z \oplus \Z/24\Z\) | not in database |
| $16$ | 16.0.3482851737600000000.6 | \(\Z/2\Z \oplus \Z/24\Z\) | not in database |
| $18$ | 18.0.1737206427048600937500000000.1 | \(\Z/2\Z \oplus \Z/18\Z\) | not in database |
| $18$ | 18.6.64340978779577812500000000.1 | \(\Z/36\Z\) | not in database |
| $18$ | 18.0.555906056655552300000000.1 | \(\Z/36\Z\) | not in database |
We only show fields where the torsion growth is primitive.
Iwasawa invariants
| $p$ | 2 | 3 | 5 |
|---|---|---|---|
| Reduction type | nonsplit | split | nonsplit |
| $\lambda$-invariant(s) | 0 | 1 | 0 |
| $\mu$-invariant(s) | 0 | 0 | 0 |
All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 5$ of good reduction are zero.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.