Properties

Label 30.a
Number of curves 8
Conductor 30
CM no
Rank 0
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath

sage: E = EllipticCurve("30.a1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 30.a

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
30.a1 30a7 [1, 0, 1, -5334, -150368] [2] 24  
30.a2 30a8 [1, 0, 1, -454, -544] [2] 24  
30.a3 30a6 [1, 0, 1, -334, -2368] [2, 2] 12  
30.a4 30a5 [1, 0, 1, -289, 1862] [6] 8  
30.a5 30a4 [1, 0, 1, -69, -194] [6] 8  
30.a6 30a2 [1, 0, 1, -19, 26] [2, 6] 4  
30.a7 30a3 [1, 0, 1, -14, -64] [2] 6  
30.a8 30a1 [1, 0, 1, 1, 2] [6] 2 \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 30.a have rank \(0\).

Modular form 30.2.a.a

sage: E.q_eigenform(10)
 
\( q - q^{2} + q^{3} + q^{4} - q^{5} - q^{6} - 4q^{7} - q^{8} + q^{9} + q^{10} + q^{12} + 2q^{13} + 4q^{14} - q^{15} + q^{16} + 6q^{17} - q^{18} - 4q^{19} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrrrrrr} 1 & 4 & 2 & 12 & 3 & 6 & 4 & 12 \\ 4 & 1 & 2 & 3 & 12 & 6 & 4 & 12 \\ 2 & 2 & 1 & 6 & 6 & 3 & 2 & 6 \\ 12 & 3 & 6 & 1 & 4 & 2 & 12 & 4 \\ 3 & 12 & 6 & 4 & 1 & 2 & 12 & 4 \\ 6 & 6 & 3 & 2 & 2 & 1 & 6 & 2 \\ 4 & 4 & 2 & 12 & 12 & 6 & 1 & 3 \\ 12 & 12 & 6 & 4 & 4 & 2 & 3 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.