Show commands for:
SageMath
sage: E = EllipticCurve("30.a1")
sage: E.isogeny_class()
Elliptic curves in class 30.a
sage: E.isogeny_class().curves
| LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
|---|---|---|---|---|---|
| 30.a1 | 30a7 | [1, 0, 1, -5334, -150368] | [2] | 24 | |
| 30.a2 | 30a8 | [1, 0, 1, -454, -544] | [2] | 24 | |
| 30.a3 | 30a6 | [1, 0, 1, -334, -2368] | [2, 2] | 12 | |
| 30.a4 | 30a5 | [1, 0, 1, -289, 1862] | [6] | 8 | |
| 30.a5 | 30a4 | [1, 0, 1, -69, -194] | [6] | 8 | |
| 30.a6 | 30a2 | [1, 0, 1, -19, 26] | [2, 6] | 4 | |
| 30.a7 | 30a3 | [1, 0, 1, -14, -64] | [2] | 6 | |
| 30.a8 | 30a1 | [1, 0, 1, 1, 2] | [6] | 2 | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curves in class 30.a have rank \(0\).
Modular form 30.2.a.a
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrrrrrr} 1 & 4 & 2 & 12 & 3 & 6 & 4 & 12 \\ 4 & 1 & 2 & 3 & 12 & 6 & 4 & 12 \\ 2 & 2 & 1 & 6 & 6 & 3 & 2 & 6 \\ 12 & 3 & 6 & 1 & 4 & 2 & 12 & 4 \\ 3 & 12 & 6 & 4 & 1 & 2 & 12 & 4 \\ 6 & 6 & 3 & 2 & 2 & 1 & 6 & 2 \\ 4 & 4 & 2 & 12 & 12 & 6 & 1 & 3 \\ 12 & 12 & 6 & 4 & 4 & 2 & 3 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.