Properties

Label 29640g
Number of curves $1$
Conductor $29640$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("g1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 29640g1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(5\)\(1 - T\)
\(13\)\(1 + T\)
\(19\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + 4 T + 7 T^{2}\) 1.7.e
\(11\) \( 1 - 4 T + 11 T^{2}\) 1.11.ae
\(17\) \( 1 + 6 T + 17 T^{2}\) 1.17.g
\(23\) \( 1 - 4 T + 23 T^{2}\) 1.23.ae
\(29\) \( 1 + 2 T + 29 T^{2}\) 1.29.c
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 29640g do not have complex multiplication.

Modular form 29640.2.a.g

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} + q^{5} - 2 q^{7} + q^{9} - 2 q^{11} - q^{13} + q^{15} - 7 q^{17} - q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 29640g

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
29640.s1 29640g1 \([0, 1, 0, -75389660, 251925710433]\) \(-2961686524287311350789156096/139506818115234375\) \(-2232109089843750000\) \([]\) \(2442240\) \(2.9990\) \(\Gamma_0(N)\)-optimal