Properties

Label 296208.dn
Number of curves $4$
Conductor $296208$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("dn1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 296208.dn have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(11\)\(1\)
\(17\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 5 T^{2}\) 1.5.a
\(7\) \( 1 - 2 T + 7 T^{2}\) 1.7.ac
\(13\) \( 1 - 4 T + 13 T^{2}\) 1.13.ae
\(19\) \( 1 - 8 T + 19 T^{2}\) 1.19.ai
\(23\) \( 1 - 6 T + 23 T^{2}\) 1.23.ag
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 296208.dn do not have complex multiplication.

Modular form 296208.2.a.dn

Copy content sage:E.q_eigenform(10)
 
\(q + 2 q^{7} + 4 q^{13} - q^{17} + 8 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 296208.dn

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
296208.dn1 296208dn3 \([0, 0, 0, -289143753195, 59843754773317658]\) \(505384091400037554067434625/815656731648\) \(4314704046582253907607552\) \([2]\) \(796262400\) \(4.8823\)  
296208.dn2 296208dn4 \([0, 0, 0, -289140965355, 59844966463925786]\) \(-505369473241574671219626625/20303219722982711328\) \(-107401043721425816866346814799872\) \([2]\) \(1592524800\) \(5.2289\)  
296208.dn3 296208dn1 \([0, 0, 0, -3579726315, 81604703078426]\) \(959024269496848362625/11151660319506432\) \(58990641577209294100384186368\) \([2]\) \(265420800\) \(4.3330\) \(\Gamma_0(N)\)-optimal
296208.dn4 296208dn2 \([0, 0, 0, -724978155, 208174530349082]\) \(-7966267523043306625/3534510366354604032\) \(-18697039561709266546713604128768\) \([2]\) \(530841600\) \(4.6796\)