Properties

Label 295659.bp
Number of curves $1$
Conductor $295659$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bp1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 295659.bp1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(3\)\(1\)
\(7\)\(1 + T\)
\(13\)\(1 + T\)
\(19\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 - T + 2 T^{2}\) 1.2.ab
\(5\) \( 1 - 3 T + 5 T^{2}\) 1.5.ad
\(11\) \( 1 - 5 T + 11 T^{2}\) 1.11.af
\(17\) \( 1 - 7 T + 17 T^{2}\) 1.17.ah
\(23\) \( 1 + 8 T + 23 T^{2}\) 1.23.i
\(29\) \( 1 - 4 T + 29 T^{2}\) 1.29.ae
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 295659.bp do not have complex multiplication.

Modular form 295659.2.a.bp

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} - q^{4} + 3 q^{5} - q^{7} - 3 q^{8} + 3 q^{10} + 5 q^{11} - q^{13} - q^{14} - q^{16} + 7 q^{17} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 295659.bp

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
295659.bp1 295659bp1 \([1, -1, 0, 296716482, 540550235133]\) \(646375946842727/402309703341\) \(-1798142249110812860682579789\) \([]\) \(195022080\) \(3.9188\) \(\Gamma_0(N)\)-optimal