Properties

Label 295659.bj
Number of curves $1$
Conductor $295659$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bj1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 295659.bj1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(3\)\(1\)
\(7\)\(1 - T\)
\(13\)\(1 + T\)
\(19\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 - T + 2 T^{2}\) 1.2.ab
\(5\) \( 1 + T + 5 T^{2}\) 1.5.b
\(11\) \( 1 + 5 T + 11 T^{2}\) 1.11.f
\(17\) \( 1 + T + 17 T^{2}\) 1.17.b
\(23\) \( 1 + 8 T + 23 T^{2}\) 1.23.i
\(29\) \( 1 - 4 T + 29 T^{2}\) 1.29.ae
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 295659.bj do not have complex multiplication.

Modular form 295659.2.a.bj

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} - q^{4} - q^{5} + q^{7} - 3 q^{8} - q^{10} - 5 q^{11} - q^{13} + q^{14} - q^{16} - q^{17} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 295659.bj

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
295659.bj1 295659bj1 \([1, -1, 0, -17208261367605, -27484721457101461098]\) \(-45517495433750736788559001281841/16721658387224695525976901\) \(-207031144400363317007647867056377320989\) \([]\) \(13924576512\) \(6.3201\) \(\Gamma_0(N)\)-optimal