Properties

Label 293046n
Number of curves $1$
Conductor $293046$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("n1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 293046n1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1 + T\)
\(13\)\(1\)
\(17\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 - T + 5 T^{2}\) 1.5.ab
\(7\) \( 1 - 3 T + 7 T^{2}\) 1.7.ad
\(11\) \( 1 - 2 T + 11 T^{2}\) 1.11.ac
\(19\) \( 1 + 7 T + 19 T^{2}\) 1.19.h
\(23\) \( 1 - 9 T + 23 T^{2}\) 1.23.aj
\(29\) \( 1 - 4 T + 29 T^{2}\) 1.29.ae
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 293046n do not have complex multiplication.

Modular form 293046.2.a.n

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} - q^{3} + q^{4} + q^{5} + q^{6} + 3 q^{7} - q^{8} + q^{9} - q^{10} + 2 q^{11} - q^{12} - 3 q^{14} - q^{15} + q^{16} - q^{18} - 7 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 293046n

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
293046.n1 293046n1 \([1, 1, 0, -15561864087, -736605420884523]\) \(298779371619116129414560801/4874288601508740071424\) \(6799378166113982244913491738624\) \([]\) \(880927488\) \(4.7154\) \(\Gamma_0(N)\)-optimal