Properties

Label 293046bz
Number of curves $2$
Conductor $293046$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bz1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 293046bz have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(3\)\(1 + T\)
\(13\)\(1\)
\(17\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 - 4 T + 5 T^{2}\) 1.5.ae
\(7\) \( 1 + 7 T^{2}\) 1.7.a
\(11\) \( 1 - 2 T + 11 T^{2}\) 1.11.ac
\(19\) \( 1 + 2 T + 19 T^{2}\) 1.19.c
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 - 2 T + 29 T^{2}\) 1.29.ac
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 293046bz do not have complex multiplication.

Modular form 293046.2.a.bz

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} - q^{3} + q^{4} + 4 q^{5} - q^{6} + q^{8} + q^{9} + 4 q^{10} + 2 q^{11} - q^{12} - 4 q^{15} + q^{16} + q^{18} - 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 293046bz

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
293046.bz2 293046bz1 \([1, 1, 1, -284671, 84203621]\) \(-48109395853/30081024\) \(-1595203894882271232\) \([2]\) \(7962624\) \(2.1945\) \(\Gamma_0(N)\)-optimal
293046.bz1 293046bz2 \([1, 1, 1, -5093631, 4421885541]\) \(275602131611533/53934336\) \(2860150733402197248\) \([2]\) \(15925248\) \(2.5410\)