Properties

Label 293046.k
Number of curves $1$
Conductor $293046$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("k1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 293046.k1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1 + T\)
\(13\)\(1\)
\(17\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 - T + 5 T^{2}\) 1.5.ab
\(7\) \( 1 + 5 T + 7 T^{2}\) 1.7.f
\(11\) \( 1 - 2 T + 11 T^{2}\) 1.11.ac
\(19\) \( 1 - T + 19 T^{2}\) 1.19.ab
\(23\) \( 1 + 7 T + 23 T^{2}\) 1.23.h
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 293046.k do not have complex multiplication.

Modular form 293046.2.a.k

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} - q^{3} + q^{4} + q^{5} + q^{6} - 5 q^{7} - q^{8} + q^{9} - q^{10} + 2 q^{11} - q^{12} + 5 q^{14} - q^{15} + q^{16} - q^{18} + q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 293046.k

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
293046.k1 293046k1 \([1, 1, 0, -508435827, -4407437029887]\) \(679912093/972\) \(20780005083791314060759644\) \([]\) \(148936320\) \(3.7607\) \(\Gamma_0(N)\)-optimal