Properties

Label 291312by
Number of curves $1$
Conductor $291312$
CM no
Rank $2$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("by1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 291312by1 has rank \(2\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(7\)\(1 + T\)
\(17\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + T + 5 T^{2}\) 1.5.b
\(11\) \( 1 + 5 T + 11 T^{2}\) 1.11.f
\(13\) \( 1 + 2 T + 13 T^{2}\) 1.13.c
\(19\) \( 1 - 2 T + 19 T^{2}\) 1.19.ac
\(23\) \( 1 + 4 T + 23 T^{2}\) 1.23.e
\(29\) \( 1 + 9 T + 29 T^{2}\) 1.29.j
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 291312by do not have complex multiplication.

Modular form 291312.2.a.by

Copy content sage:E.q_eigenform(10)
 
\(q - q^{5} - q^{7} - 5 q^{11} - 2 q^{13} + 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 291312by

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
291312.by1 291312by1 \([0, 0, 0, -250563, 2143649986]\) \(-83521/95256\) \(-1984134862164476657664\) \([]\) \(14100480\) \(2.7656\) \(\Gamma_0(N)\)-optimal