Properties

Label 29040j
Number of curves $4$
Conductor $29040$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("j1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 29040j have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(5\)\(1 + T\)
\(11\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + 2 T + 7 T^{2}\) 1.7.c
\(13\) \( 1 - 4 T + 13 T^{2}\) 1.13.ae
\(17\) \( 1 - 6 T + 17 T^{2}\) 1.17.ag
\(19\) \( 1 - 2 T + 19 T^{2}\) 1.19.ac
\(23\) \( 1 + 4 T + 23 T^{2}\) 1.23.e
\(29\) \( 1 - 2 T + 29 T^{2}\) 1.29.ac
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 29040j do not have complex multiplication.

Modular form 29040.2.a.j

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} - q^{5} + 4 q^{7} + q^{9} + 6 q^{13} + q^{15} + 2 q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 29040j

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
29040.bb4 29040j1 \([0, -1, 0, 444, -1824]\) \(21296/15\) \(-6802794240\) \([2]\) \(23040\) \(0.57520\) \(\Gamma_0(N)\)-optimal
29040.bb3 29040j2 \([0, -1, 0, -1976, -13440]\) \(470596/225\) \(408167654400\) \([2, 2]\) \(46080\) \(0.92178\)  
29040.bb2 29040j3 \([0, -1, 0, -16496, 811296]\) \(136835858/1875\) \(6802794240000\) \([2]\) \(92160\) \(1.2684\)  
29040.bb1 29040j4 \([0, -1, 0, -26176, -1620320]\) \(546718898/405\) \(1469403555840\) \([2]\) \(92160\) \(1.2684\)