Show commands: SageMath
Rank
The elliptic curves in class 290400dy have rank \(0\).
L-function data
Bad L-factors: |
| ||||||||||||||||||||||||
Good L-factors: |
| ||||||||||||||||||||||||
See L-function page for more information |
Complex multiplication
The elliptic curves in class 290400dy do not have complex multiplication.Modular form 290400.2.a.dy
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 2 & 2 \\ 2 & 1 & 4 & 4 \\ 2 & 4 & 1 & 4 \\ 2 & 4 & 4 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 290400dy
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
290400.dy3 | 290400dy1 | \([0, 1, 0, -59297058, 175721160888]\) | \(13015685560572352/864536409\) | \(1531578985264449000000\) | \([2, 2]\) | \(29491200\) | \(3.1209\) | \(\Gamma_0(N)\)-optimal |
290400.dy1 | 290400dy2 | \([0, 1, 0, -948737808, 11247479616888]\) | \(6663712298552914184/29403\) | \(416713664664000000\) | \([2]\) | \(58982400\) | \(3.4674\) | |
290400.dy4 | 290400dy3 | \([0, 1, 0, -55636808, 198363467388]\) | \(-1343891598641864/421900912521\) | \(-5979385619892922248000000\) | \([2]\) | \(58982400\) | \(3.4674\) | |
290400.dy2 | 290400dy4 | \([0, 1, 0, -62972433, 152702287263]\) | \(243578556889408/52089208083\) | \(5905869411886564032000000\) | \([2]\) | \(58982400\) | \(3.4674\) |