Properties

Label 290400dy
Number of curves $4$
Conductor $290400$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("dy1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 290400dy have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 - T\)
\(5\)\(1\)
\(11\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + 4 T + 7 T^{2}\) 1.7.e
\(13\) \( 1 + 2 T + 13 T^{2}\) 1.13.c
\(17\) \( 1 - 2 T + 17 T^{2}\) 1.17.ac
\(19\) \( 1 - 4 T + 19 T^{2}\) 1.19.ae
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 290400dy do not have complex multiplication.

Modular form 290400.2.a.dy

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} - 4 q^{7} + q^{9} - 2 q^{13} + 2 q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 2 & 2 \\ 2 & 1 & 4 & 4 \\ 2 & 4 & 1 & 4 \\ 2 & 4 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 290400dy

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
290400.dy3 290400dy1 \([0, 1, 0, -59297058, 175721160888]\) \(13015685560572352/864536409\) \(1531578985264449000000\) \([2, 2]\) \(29491200\) \(3.1209\) \(\Gamma_0(N)\)-optimal
290400.dy1 290400dy2 \([0, 1, 0, -948737808, 11247479616888]\) \(6663712298552914184/29403\) \(416713664664000000\) \([2]\) \(58982400\) \(3.4674\)  
290400.dy4 290400dy3 \([0, 1, 0, -55636808, 198363467388]\) \(-1343891598641864/421900912521\) \(-5979385619892922248000000\) \([2]\) \(58982400\) \(3.4674\)  
290400.dy2 290400dy4 \([0, 1, 0, -62972433, 152702287263]\) \(243578556889408/52089208083\) \(5905869411886564032000000\) \([2]\) \(58982400\) \(3.4674\)