Properties

Label 29040.cw
Number of curves $4$
Conductor $29040$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("cw1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 29040.cw have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 - T\)
\(5\)\(1 - T\)
\(11\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + 4 T + 7 T^{2}\) 1.7.e
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(17\) \( 1 - 2 T + 17 T^{2}\) 1.17.ac
\(19\) \( 1 + 8 T + 19 T^{2}\) 1.19.i
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 + 2 T + 29 T^{2}\) 1.29.c
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 29040.cw do not have complex multiplication.

Modular form 29040.2.a.cw

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} + q^{5} - 4 q^{7} + q^{9} + 2 q^{13} + q^{15} + 2 q^{17} - 8 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 29040.cw

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
29040.cw1 29040dq4 \([0, 1, 0, -3102480, 2102298900]\) \(455129268177961/4392300\) \(31871907349708800\) \([2]\) \(737280\) \(2.3281\)  
29040.cw2 29040dq2 \([0, 1, 0, -198480, 31166100]\) \(119168121961/10890000\) \(79021257891840000\) \([2, 2]\) \(368640\) \(1.9815\)  
29040.cw3 29040dq1 \([0, 1, 0, -43600, -2969452]\) \(1263214441/211200\) \(1532533486387200\) \([2]\) \(184320\) \(1.6349\) \(\Gamma_0(N)\)-optimal
29040.cw4 29040dq3 \([0, 1, 0, 227440, 147186708]\) \(179310732119/1392187500\) \(-10102149446400000000\) \([4]\) \(737280\) \(2.3281\)