Show commands: SageMath
Rank
The elliptic curves in class 29040.cw have rank \(1\).
L-function data
Bad L-factors: |
| ||||||||||||||||||||||||
Good L-factors: |
| ||||||||||||||||||||||||
See L-function page for more information |
Complex multiplication
The elliptic curves in class 29040.cw do not have complex multiplication.Modular form 29040.2.a.cw
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with LMFDB labels.
Elliptic curves in class 29040.cw
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
29040.cw1 | 29040dq4 | \([0, 1, 0, -3102480, 2102298900]\) | \(455129268177961/4392300\) | \(31871907349708800\) | \([2]\) | \(737280\) | \(2.3281\) | |
29040.cw2 | 29040dq2 | \([0, 1, 0, -198480, 31166100]\) | \(119168121961/10890000\) | \(79021257891840000\) | \([2, 2]\) | \(368640\) | \(1.9815\) | |
29040.cw3 | 29040dq1 | \([0, 1, 0, -43600, -2969452]\) | \(1263214441/211200\) | \(1532533486387200\) | \([2]\) | \(184320\) | \(1.6349\) | \(\Gamma_0(N)\)-optimal |
29040.cw4 | 29040dq3 | \([0, 1, 0, 227440, 147186708]\) | \(179310732119/1392187500\) | \(-10102149446400000000\) | \([4]\) | \(737280\) | \(2.3281\) |