Properties

Label 29008k
Number of curves $1$
Conductor $29008$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("k1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 29008k1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(7\)\(1\)
\(37\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + 3 T^{2}\) 1.3.a
\(5\) \( 1 - 4 T + 5 T^{2}\) 1.5.ae
\(11\) \( 1 - 4 T + 11 T^{2}\) 1.11.ae
\(13\) \( 1 - 4 T + 13 T^{2}\) 1.13.ae
\(17\) \( 1 + 17 T^{2}\) 1.17.a
\(19\) \( 1 - 2 T + 19 T^{2}\) 1.19.ac
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 29008k do not have complex multiplication.

Modular form 29008.2.a.k

Copy content sage:E.q_eigenform(10)
 
\(q - 3 q^{3} + 2 q^{5} + 6 q^{9} + 5 q^{11} + 2 q^{13} - 6 q^{15} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 29008k

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
29008.a1 29008k1 \([0, 0, 0, -784, 5488]\) \(110592/37\) \(17829941248\) \([]\) \(30240\) \(0.66956\) \(\Gamma_0(N)\)-optimal