Properties

Label 29008.j
Number of curves $1$
Conductor $29008$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("j1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 29008.j1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(7\)\(1\)
\(37\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + 3 T^{2}\) 1.3.a
\(5\) \( 1 - T + 5 T^{2}\) 1.5.ab
\(11\) \( 1 + 5 T + 11 T^{2}\) 1.11.f
\(13\) \( 1 - T + 13 T^{2}\) 1.13.ab
\(17\) \( 1 + 6 T + 17 T^{2}\) 1.17.g
\(19\) \( 1 + 4 T + 19 T^{2}\) 1.19.e
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 + 29 T^{2}\) 1.29.a
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 29008.j do not have complex multiplication.

Modular form 29008.2.a.j

Copy content sage:E.q_eigenform(10)
 
\(q + q^{5} - 3 q^{9} - 5 q^{11} + q^{13} - 6 q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 29008.j

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
29008.j1 29008b1 \([0, 0, 0, -1608572, 787101308]\) \(-15283295882302464/41714923579\) \(-1256376075301317376\) \([]\) \(387072\) \(2.3465\) \(\Gamma_0(N)\)-optimal