Properties

Label 28665bu
Number of curves $1$
Conductor $28665$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bu1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 28665bu1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(3\)\(1\)
\(5\)\(1 - T\)
\(7\)\(1\)
\(13\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 - T + 2 T^{2}\) 1.2.ab
\(11\) \( 1 - 6 T + 11 T^{2}\) 1.11.ag
\(17\) \( 1 + 17 T^{2}\) 1.17.a
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(23\) \( 1 + 8 T + 23 T^{2}\) 1.23.i
\(29\) \( 1 + 4 T + 29 T^{2}\) 1.29.e
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 28665bu do not have complex multiplication.

Modular form 28665.2.a.bu

Copy content sage:E.q_eigenform(10)
 
\(q - 2 q^{2} + 2 q^{4} + q^{5} - 2 q^{10} + 5 q^{11} - q^{13} - 4 q^{16} + 5 q^{17} - 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 28665bu

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
28665.e1 28665bu1 \([0, 0, 1, -147, -6260]\) \(-4096/195\) \(-16724393595\) \([]\) \(31680\) \(0.64168\) \(\Gamma_0(N)\)-optimal