Properties

Label 286650qa
Number of curves $2$
Conductor $286650$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("qa1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 286650qa have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(3\)\(1\)
\(5\)\(1\)
\(7\)\(1\)
\(13\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(11\) \( 1 - 4 T + 11 T^{2}\) 1.11.ae
\(17\) \( 1 + 17 T^{2}\) 1.17.a
\(19\) \( 1 + 2 T + 19 T^{2}\) 1.19.c
\(23\) \( 1 + 4 T + 23 T^{2}\) 1.23.e
\(29\) \( 1 + 2 T + 29 T^{2}\) 1.29.c
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 286650qa do not have complex multiplication.

Modular form 286650.2.a.qa

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} + q^{4} + q^{8} + 4 q^{11} - q^{13} + q^{16} - 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 286650qa

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
286650.qa2 286650qa1 \([1, -1, 1, -54188105, 148924157897]\) \(38282975119927/1314144000\) \(604049975424850500000000\) \([2]\) \(41287680\) \(3.3349\) \(\Gamma_0(N)\)-optimal
286650.qa1 286650qa2 \([1, -1, 1, -134450105, -394770630103]\) \(584759426925367/191909250000\) \(88211625016970355468750000\) \([2]\) \(82575360\) \(3.6815\)