Properties

Label 286650.mh
Number of curves $4$
Conductor $286650$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("mh1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 286650.mh have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(3\)\(1\)
\(5\)\(1\)
\(7\)\(1\)
\(13\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(17\) \( 1 + 2 T + 17 T^{2}\) 1.17.c
\(19\) \( 1 + 4 T + 19 T^{2}\) 1.19.e
\(23\) \( 1 + 8 T + 23 T^{2}\) 1.23.i
\(29\) \( 1 + 10 T + 29 T^{2}\) 1.29.k
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 286650.mh do not have complex multiplication.

Modular form 286650.2.a.mh

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} + q^{4} + q^{8} - q^{13} + q^{16} - 2 q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 286650.mh

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
286650.mh1 286650mh3 \([1, -1, 1, -464329130, -259405305253]\) \(8261629364934163009/4759323790524030\) \(6377949064004103287306718750\) \([2]\) \(188743680\) \(4.0248\)  
286650.mh2 286650mh2 \([1, -1, 1, -330375380, -2305682790253]\) \(2975849362756797409/8263842596100\) \(11074339437844792626562500\) \([2, 2]\) \(94371840\) \(3.6782\)  
286650.mh3 286650mh1 \([1, -1, 1, -330154880, -2308921494253]\) \(2969894891179808929/22997520\) \(30818876297186250000\) \([2]\) \(47185920\) \(3.3316\) \(\Gamma_0(N)\)-optimal
286650.mh4 286650mh4 \([1, -1, 1, -199949630, -4144685865253]\) \(-659704930833045889/5156082432978750\) \(-6909643591137966608261718750\) \([2]\) \(188743680\) \(4.0248\)