Properties

Label 286650.he
Number of curves $4$
Conductor $286650$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("he1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 286650.he have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1\)
\(5\)\(1\)
\(7\)\(1\)
\(13\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(11\) \( 1 - 4 T + 11 T^{2}\) 1.11.ae
\(17\) \( 1 - 2 T + 17 T^{2}\) 1.17.ac
\(19\) \( 1 + 8 T + 19 T^{2}\) 1.19.i
\(23\) \( 1 + 4 T + 23 T^{2}\) 1.23.e
\(29\) \( 1 - 2 T + 29 T^{2}\) 1.29.ac
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 286650.he do not have complex multiplication.

Modular form 286650.2.a.he

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{4} - q^{8} + 4 q^{11} - q^{13} + q^{16} + 2 q^{17} - 8 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 286650.he

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
286650.he1 286650he4 \([1, -1, 0, -3648723568317, -1667548926470833659]\) \(4008766897254067912673785886329/1423480510711669921875000000\) \(1907600026919357478618621826171875000000\) \([2]\) \(15854469120\) \(6.2383\)  
286650.he2 286650he2 \([1, -1, 0, -1542327640317, 718254102190582341]\) \(302773487204995438715379645049/8911747415025000000000000\) \(11942593861226115125390625000000000000\) \([2, 2]\) \(7927234560\) \(5.8917\)  
286650.he3 286650he1 \([1, -1, 0, -1531263832317, 729328254851062341]\) \(296304326013275547793071733369/268420373544960000000\) \(359708972442534973440000000000000\) \([2]\) \(3963617280\) \(5.5451\) \(\Gamma_0(N)\)-optimal
286650.he4 286650he3 \([1, -1, 0, 387047359683, 2395311227815582341]\) \(4784981304203817469820354951/1852343836482910078035000000\) \(-2482317900209335627888582066171875000000\) \([2]\) \(15854469120\) \(6.2383\)