Properties

Label 2856.b
Number of curves $4$
Conductor $2856$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("b1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 2856.b have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(7\)\(1 - T\)
\(17\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 - 2 T + 5 T^{2}\) 1.5.ac
\(11\) \( 1 + 4 T + 11 T^{2}\) 1.11.e
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(19\) \( 1 + 4 T + 19 T^{2}\) 1.19.e
\(23\) \( 1 + 4 T + 23 T^{2}\) 1.23.e
\(29\) \( 1 + 2 T + 29 T^{2}\) 1.29.c
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 2856.b do not have complex multiplication.

Modular form 2856.2.a.b

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} + 2 q^{5} + q^{7} + q^{9} - 4 q^{11} + 2 q^{13} - 2 q^{15} - q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 2856.b

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
2856.b1 2856f3 \([0, -1, 0, -2192, -38772]\) \(569001644066/122451\) \(250779648\) \([2]\) \(1536\) \(0.60642\)  
2856.b2 2856f4 \([0, -1, 0, -992, 12012]\) \(52767497666/1753941\) \(3592071168\) \([2]\) \(1536\) \(0.60642\)  
2856.b3 2856f2 \([0, -1, 0, -152, -420]\) \(381775972/127449\) \(130507776\) \([2, 2]\) \(768\) \(0.25985\)  
2856.b4 2856f1 \([0, -1, 0, 28, -60]\) \(9148592/9639\) \(-2467584\) \([2]\) \(384\) \(-0.086725\) \(\Gamma_0(N)\)-optimal