Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy=x^3+4772x+7952\)
|
(homogenize, simplify) |
\(y^2z+xyz=x^3+4772xz^2+7952z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3+6184485x+352455030\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{5}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(26, 374)$ | $1.9043331423489378265881998731$ | $\infty$ |
$(8, 212)$ | $0$ | $5$ |
Integral points
\( \left(8, 212\right) \), \( \left(8, -220\right) \), \( \left(26, 374\right) \), \( \left(26, -400\right) \), \( \left(56, 644\right) \), \( \left(56, -700\right) \), \( \left(116, 1400\right) \), \( \left(116, -1516\right) \), \( \left(278, 4640\right) \), \( \left(278, -4918\right) \), \( \left(1088, 35420\right) \), \( \left(1088, -36508\right) \)
Invariants
Conductor: | $N$ | = | \( 2850 \) | = | $2 \cdot 3 \cdot 5^{2} \cdot 19$ |
|
Discriminant: | $\Delta$ | = | $-6979308364800$ | = | $-1 \cdot 2^{10} \cdot 3^{15} \cdot 5^{2} \cdot 19 $ |
|
j-invariant: | $j$ | = | \( \frac{480705753733655}{279172334592} \) | = | $2^{-10} \cdot 3^{-15} \cdot 5 \cdot 19^{-1} \cdot 61^{3} \cdot 751^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.1539463040000813778317158915$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.88570665192773131539825600263$ |
|
||
$abc$ quality: | $Q$ | ≈ | $1.08504151838819$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.6542811560613035$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $1.9043331423489378265881998731$ |
|
Real period: | $\Omega$ | ≈ | $0.44954163067818651054042182540$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 150 $ = $ ( 2 \cdot 5 )\cdot( 3 \cdot 5 )\cdot1\cdot1 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $5$ |
|
Special value: | $ L'(E,1)$ | ≈ | $5.1364621569963395282953154971 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 5.136462157 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.449542 \cdot 1.904333 \cdot 150}{5^2} \\ & \approx 5.136462157\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 7200 |
|
$ \Gamma_0(N) $-optimal: | yes | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $10$ | $I_{10}$ | split multiplicative | -1 | 1 | 10 | 10 |
$3$ | $15$ | $I_{15}$ | split multiplicative | -1 | 1 | 15 | 15 |
$5$ | $1$ | $II$ | additive | 1 | 2 | 2 | 0 |
$19$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$5$ | 5B.1.1 | 5.24.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 1140 = 2^{2} \cdot 3 \cdot 5 \cdot 19 \), index $48$, genus $1$, and generators
$\left(\begin{array}{rr} 6 & 13 \\ 1085 & 1021 \end{array}\right),\left(\begin{array}{rr} 781 & 10 \\ 485 & 51 \end{array}\right),\left(\begin{array}{rr} 571 & 10 \\ 575 & 51 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 10 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 10 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 571 & 10 \\ 0 & 1027 \end{array}\right),\left(\begin{array}{rr} 761 & 10 \\ 385 & 51 \end{array}\right),\left(\begin{array}{rr} 1131 & 10 \\ 1130 & 11 \end{array}\right)$.
The torsion field $K:=\Q(E[1140])$ is a degree-$5673369600$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/1140\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | split multiplicative | $4$ | \( 1425 = 3 \cdot 5^{2} \cdot 19 \) |
$3$ | split multiplicative | $4$ | \( 950 = 2 \cdot 5^{2} \cdot 19 \) |
$5$ | additive | $10$ | \( 19 \) |
$19$ | nonsplit multiplicative | $20$ | \( 150 = 2 \cdot 3 \cdot 5^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
5.
Its isogeny class 2850w
consists of 2 curves linked by isogenies of
degree 5.
Twists
This elliptic curve is its own minimal quadratic twist.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{5}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$3$ | 3.1.5700.1 | \(\Z/10\Z\) | not in database |
$6$ | 6.0.7407720000.1 | \(\Z/2\Z \oplus \Z/10\Z\) | not in database |
$8$ | 8.2.71253006750000.7 | \(\Z/15\Z\) | not in database |
$12$ | deg 12 | \(\Z/20\Z\) | not in database |
$20$ | 20.0.1343159999547624810044653713703155517578125.1 | \(\Z/5\Z \oplus \Z/5\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | split | split | add | ord | ord | ord | ord | nonsplit | ord | ord | ord | ord | ord | ord | ord |
$\lambda$-invariant(s) | 10 | 2 | - | 1 | 1 | 3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
$\mu$-invariant(s) | 0 | 0 | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.