Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
2850.d2 |
2850g2 |
2850.d |
2850g |
$2$ |
$5$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 19 \) |
\( - 2^{10} \cdot 3^{15} \cdot 5^{8} \cdot 19 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.24.0.2 |
5B.1.4 |
$1140$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$36000$ |
$1.958666$ |
$480705753733655/279172334592$ |
$1.08504$ |
$5.86818$ |
$[1, 1, 0, 119300, 994000]$ |
\(y^2+xy=x^3+x^2+119300x+994000\) |
5.24.0-5.a.1.1, 228.2.0.?, 1140.48.1.? |
$[ ]$ |
2850.z2 |
2850w1 |
2850.z |
2850w |
$2$ |
$5$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 19 \) |
\( - 2^{10} \cdot 3^{15} \cdot 5^{2} \cdot 19 \) |
$1$ |
$\Z/5\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.24.0.1 |
5B.1.1 |
$1140$ |
$48$ |
$1$ |
$1.904333142$ |
$1$ |
|
$12$ |
$7200$ |
$1.153946$ |
$480705753733655/279172334592$ |
$1.08504$ |
$4.65428$ |
$[1, 0, 0, 4772, 7952]$ |
\(y^2+xy=x^3+4772x+7952\) |
5.24.0-5.a.1.2, 228.2.0.?, 1140.48.1.? |
$[(26, 374)]$ |
8550.f2 |
8550e1 |
8550.f |
8550e |
$2$ |
$5$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 19 \) |
\( - 2^{10} \cdot 3^{21} \cdot 5^{2} \cdot 19 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.1 |
5B.4.1 |
$1140$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$57600$ |
$1.703253$ |
$480705753733655/279172334592$ |
$1.08504$ |
$4.81758$ |
$[1, -1, 0, 42948, -214704]$ |
\(y^2+xy=x^3-x^2+42948x-214704\) |
5.12.0.a.1, 15.24.0-5.a.1.1, 228.2.0.?, 380.24.0.?, 1140.48.1.? |
$[ ]$ |
8550.bi2 |
8550bl2 |
8550.bi |
8550bl |
$2$ |
$5$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 19 \) |
\( - 2^{10} \cdot 3^{21} \cdot 5^{8} \cdot 19 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.1 |
5B.4.1 |
$1140$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$288000$ |
$2.507973$ |
$480705753733655/279172334592$ |
$1.08504$ |
$5.88417$ |
$[1, -1, 1, 1073695, -25764303]$ |
\(y^2+xy+y=x^3-x^2+1073695x-25764303\) |
5.12.0.a.1, 15.24.0-5.a.1.2, 228.2.0.?, 380.24.0.?, 1140.48.1.? |
$[ ]$ |
22800.bh2 |
22800cd1 |
22800.bh |
22800cd |
$2$ |
$5$ |
\( 2^{4} \cdot 3 \cdot 5^{2} \cdot 19 \) |
\( - 2^{22} \cdot 3^{15} \cdot 5^{2} \cdot 19 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.1 |
5B.4.1 |
$1140$ |
$48$ |
$1$ |
$10.40496013$ |
$1$ |
|
$0$ |
$172800$ |
$1.847094$ |
$480705753733655/279172334592$ |
$1.08504$ |
$4.51870$ |
$[0, -1, 0, 76352, -508928]$ |
\(y^2=x^3-x^2+76352x-508928\) |
5.12.0.a.1, 20.24.0-5.a.1.2, 228.2.0.?, 570.24.0.?, 1140.48.1.? |
$[(62706/5, 15793946/5)]$ |
22800.cm2 |
22800ds2 |
22800.cm |
22800ds |
$2$ |
$5$ |
\( 2^{4} \cdot 3 \cdot 5^{2} \cdot 19 \) |
\( - 2^{22} \cdot 3^{15} \cdot 5^{8} \cdot 19 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.1 |
5B.4.1 |
$1140$ |
$48$ |
$1$ |
$0.757621850$ |
$1$ |
|
$6$ |
$864000$ |
$2.651814$ |
$480705753733655/279172334592$ |
$1.08504$ |
$5.48104$ |
$[0, 1, 0, 1908792, -59798412]$ |
\(y^2=x^3+x^2+1908792x-59798412\) |
5.12.0.a.1, 20.24.0-5.a.1.1, 228.2.0.?, 570.24.0.?, 1140.48.1.? |
$[(108, 12150)]$ |
54150.d2 |
54150h1 |
54150.d |
54150h |
$2$ |
$5$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 19^{2} \) |
\( - 2^{10} \cdot 3^{15} \cdot 5^{2} \cdot 19^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.1 |
5B.4.1 |
$1140$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$2592000$ |
$2.626167$ |
$480705753733655/279172334592$ |
$1.08504$ |
$5.01782$ |
$[1, 1, 0, 1722685, -51097395]$ |
\(y^2+xy=x^3+x^2+1722685x-51097395\) |
5.12.0.a.1, 60.24.0-5.a.1.4, 95.24.0.?, 228.2.0.?, 1140.48.1.? |
$[ ]$ |
54150.cp2 |
54150cw2 |
54150.cp |
54150cw |
$2$ |
$5$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 19^{2} \) |
\( - 2^{10} \cdot 3^{15} \cdot 5^{8} \cdot 19^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.1 |
5B.4.1 |
$1140$ |
$48$ |
$1$ |
$0.288095429$ |
$1$ |
|
$8$ |
$12960000$ |
$3.430885$ |
$480705753733655/279172334592$ |
$1.08504$ |
$5.90379$ |
$[1, 0, 0, 43067112, -6473308608]$ |
\(y^2+xy=x^3+43067112x-6473308608\) |
5.12.0.a.1, 60.24.0-5.a.1.3, 95.24.0.?, 228.2.0.?, 1140.48.1.? |
$[(19752, 2914224)]$ |
68400.bh2 |
68400gl2 |
68400.bh |
68400gl |
$2$ |
$5$ |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 19 \) |
\( - 2^{22} \cdot 3^{21} \cdot 5^{8} \cdot 19 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.1 |
5B.4.1 |
$1140$ |
$48$ |
$1$ |
$24.73010371$ |
$1$ |
|
$0$ |
$6912000$ |
$3.201118$ |
$480705753733655/279172334592$ |
$1.08504$ |
$5.53225$ |
$[0, 0, 0, 17179125, 1631736250]$ |
\(y^2=x^3+17179125x+1631736250\) |
5.12.0.a.1, 60.24.0-5.a.1.1, 190.24.0.?, 228.2.0.?, 1140.48.1.? |
$[(246706888319/5771, 140630286792870378/5771)]$ |
68400.et2 |
68400fh1 |
68400.et |
68400fh |
$2$ |
$5$ |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 19 \) |
\( - 2^{22} \cdot 3^{21} \cdot 5^{2} \cdot 19 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.1 |
5B.4.1 |
$1140$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$1382400$ |
$2.396400$ |
$480705753733655/279172334592$ |
$1.08504$ |
$4.66487$ |
$[0, 0, 0, 687165, 13053890]$ |
\(y^2=x^3+687165x+13053890\) |
5.12.0.a.1, 60.24.0-5.a.1.2, 190.24.0.?, 228.2.0.?, 1140.48.1.? |
$[ ]$ |
91200.be2 |
91200gw2 |
91200.be |
91200gw |
$2$ |
$5$ |
\( 2^{6} \cdot 3 \cdot 5^{2} \cdot 19 \) |
\( - 2^{28} \cdot 3^{15} \cdot 5^{8} \cdot 19 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.1 |
5B.4.1 |
$2280$ |
$48$ |
$1$ |
$23.65883847$ |
$1$ |
|
$0$ |
$6912000$ |
$2.998386$ |
$480705753733655/279172334592$ |
$1.08504$ |
$5.17988$ |
$[0, -1, 0, 7635167, -486022463]$ |
\(y^2=x^3-x^2+7635167x-486022463\) |
5.12.0.a.1, 40.24.0-5.a.1.2, 228.2.0.?, 1140.24.1.?, 2280.48.1.? |
$[(34852677363/1429, 6590818598980436/1429)]$ |
91200.bo2 |
91200bg1 |
91200.bo |
91200bg |
$2$ |
$5$ |
\( 2^{6} \cdot 3 \cdot 5^{2} \cdot 19 \) |
\( - 2^{28} \cdot 3^{15} \cdot 5^{2} \cdot 19 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.1 |
5B.4.1 |
$2280$ |
$48$ |
$1$ |
$1$ |
$4$ |
$2$ |
$0$ |
$1382400$ |
$2.193668$ |
$480705753733655/279172334592$ |
$1.08504$ |
$4.33435$ |
$[0, -1, 0, 305407, 3766017]$ |
\(y^2=x^3-x^2+305407x+3766017\) |
5.12.0.a.1, 40.24.0-5.a.1.3, 228.2.0.?, 1140.24.1.?, 2280.48.1.? |
$[ ]$ |
91200.hx2 |
91200hq1 |
91200.hx |
91200hq |
$2$ |
$5$ |
\( 2^{6} \cdot 3 \cdot 5^{2} \cdot 19 \) |
\( - 2^{28} \cdot 3^{15} \cdot 5^{2} \cdot 19 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.1 |
5B.4.1 |
$2280$ |
$48$ |
$1$ |
$2.015943279$ |
$1$ |
|
$2$ |
$1382400$ |
$2.193668$ |
$480705753733655/279172334592$ |
$1.08504$ |
$4.33435$ |
$[0, 1, 0, 305407, -3766017]$ |
\(y^2=x^3+x^2+305407x-3766017\) |
5.12.0.a.1, 40.24.0-5.a.1.1, 228.2.0.?, 1140.24.1.?, 2280.48.1.? |
$[(529, 17496)]$ |
91200.ih2 |
91200eq2 |
91200.ih |
91200eq |
$2$ |
$5$ |
\( 2^{6} \cdot 3 \cdot 5^{2} \cdot 19 \) |
\( - 2^{28} \cdot 3^{15} \cdot 5^{8} \cdot 19 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.1 |
5B.4.1 |
$2280$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$6912000$ |
$2.998386$ |
$480705753733655/279172334592$ |
$1.08504$ |
$5.17988$ |
$[0, 1, 0, 7635167, 486022463]$ |
\(y^2=x^3+x^2+7635167x+486022463\) |
5.12.0.a.1, 40.24.0-5.a.1.4, 228.2.0.?, 1140.24.1.?, 2280.48.1.? |
$[ ]$ |
139650.cu2 |
139650fk2 |
139650.cu |
139650fk |
$2$ |
$5$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 7^{2} \cdot 19 \) |
\( - 2^{10} \cdot 3^{15} \cdot 5^{8} \cdot 7^{6} \cdot 19 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.1 |
5B.4.1 |
$7980$ |
$48$ |
$1$ |
$1.032965904$ |
$1$ |
|
$4$ |
$12960000$ |
$2.931622$ |
$480705753733655/279172334592$ |
$1.08504$ |
$4.92595$ |
$[1, 0, 1, 5845674, -323404952]$ |
\(y^2+xy+y=x^3+5845674x-323404952\) |
5.12.0.a.1, 35.24.0-5.a.1.1, 228.2.0.?, 1140.24.1.?, 7980.48.1.? |
$[(2741, 189141)]$ |
139650.fb2 |
139650dy1 |
139650.fb |
139650dy |
$2$ |
$5$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 7^{2} \cdot 19 \) |
\( - 2^{10} \cdot 3^{15} \cdot 5^{2} \cdot 7^{6} \cdot 19 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.1 |
5B.4.1 |
$7980$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$2592000$ |
$2.126900$ |
$480705753733655/279172334592$ |
$1.08504$ |
$4.11083$ |
$[1, 1, 1, 233827, -2493709]$ |
\(y^2+xy+y=x^3+x^2+233827x-2493709\) |
5.12.0.a.1, 35.24.0-5.a.1.2, 228.2.0.?, 1140.24.1.?, 7980.48.1.? |
$[ ]$ |
162450.bx2 |
162450cw2 |
162450.bx |
162450cw |
$2$ |
$5$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 19^{2} \) |
\( - 2^{10} \cdot 3^{21} \cdot 5^{8} \cdot 19^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.1 |
5B.4.1 |
$1140$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$103680000$ |
$3.980190$ |
$480705753733655/279172334592$ |
$1.08504$ |
$5.91260$ |
$[1, -1, 0, 387604008, 174779332416]$ |
\(y^2+xy=x^3-x^2+387604008x+174779332416\) |
5.12.0.a.1, 20.24.0-5.a.1.3, 228.2.0.?, 285.24.0.?, 1140.48.1.? |
$[ ]$ |
162450.dk2 |
162450ba1 |
162450.dk |
162450ba |
$2$ |
$5$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 19^{2} \) |
\( - 2^{10} \cdot 3^{21} \cdot 5^{2} \cdot 19^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.1 |
5B.4.1 |
$1140$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$20736000$ |
$3.175472$ |
$480705753733655/279172334592$ |
$1.08504$ |
$5.10775$ |
$[1, -1, 1, 15504160, 1395133827]$ |
\(y^2+xy+y=x^3-x^2+15504160x+1395133827\) |
5.12.0.a.1, 20.24.0-5.a.1.4, 228.2.0.?, 285.24.0.?, 1140.48.1.? |
$[ ]$ |
273600.dq2 |
273600dq1 |
273600.dq |
273600dq |
$2$ |
$5$ |
\( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 19 \) |
\( - 2^{28} \cdot 3^{21} \cdot 5^{2} \cdot 19 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.1 |
5B.4.1 |
$2280$ |
$48$ |
$1$ |
$5.535706899$ |
$1$ |
|
$0$ |
$11059200$ |
$2.742973$ |
$480705753733655/279172334592$ |
$1.08504$ |
$4.48052$ |
$[0, 0, 0, 2748660, -104431120]$ |
\(y^2=x^3+2748660x-104431120\) |
5.12.0.a.1, 120.24.0.?, 228.2.0.?, 760.24.0.?, 1140.24.1.?, $\ldots$ |
$[(2099854/5, 3043464192/5)]$ |
273600.ev2 |
273600ev2 |
273600.ev |
273600ev |
$2$ |
$5$ |
\( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 19 \) |
\( - 2^{28} \cdot 3^{21} \cdot 5^{8} \cdot 19 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.1 |
5B.4.1 |
$2280$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$55296000$ |
$3.547691$ |
$480705753733655/279172334592$ |
$1.08504$ |
$5.25185$ |
$[0, 0, 0, 68716500, 13053890000]$ |
\(y^2=x^3+68716500x+13053890000\) |
5.12.0.a.1, 120.24.0.?, 228.2.0.?, 760.24.0.?, 1140.24.1.?, $\ldots$ |
$[ ]$ |
273600.lp2 |
273600lp2 |
273600.lp |
273600lp |
$2$ |
$5$ |
\( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 19 \) |
\( - 2^{28} \cdot 3^{21} \cdot 5^{8} \cdot 19 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.1 |
5B.4.1 |
$2280$ |
$48$ |
$1$ |
$15.26262876$ |
$1$ |
|
$8$ |
$55296000$ |
$3.547691$ |
$480705753733655/279172334592$ |
$1.08504$ |
$5.25185$ |
$[0, 0, 0, 68716500, -13053890000]$ |
\(y^2=x^3+68716500x-13053890000\) |
5.12.0.a.1, 120.24.0.?, 228.2.0.?, 760.24.0.?, 1140.24.1.?, $\ldots$ |
$[(950, 230400), (140550/11, 347929600/11)]$ |
273600.mw2 |
273600mw1 |
273600.mw |
273600mw |
$2$ |
$5$ |
\( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 19 \) |
\( - 2^{28} \cdot 3^{21} \cdot 5^{2} \cdot 19 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.1 |
5B.4.1 |
$2280$ |
$48$ |
$1$ |
$28.57354866$ |
$1$ |
|
$0$ |
$11059200$ |
$2.742973$ |
$480705753733655/279172334592$ |
$1.08504$ |
$4.48052$ |
$[0, 0, 0, 2748660, 104431120]$ |
\(y^2=x^3+2748660x+104431120\) |
5.12.0.a.1, 120.24.0.?, 228.2.0.?, 760.24.0.?, 1140.24.1.?, $\ldots$ |
$[(11645060277344/61549, 45212690595347754588/61549)]$ |
344850.do2 |
344850do1 |
344850.do |
344850do |
$2$ |
$5$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 11^{2} \cdot 19 \) |
\( - 2^{10} \cdot 3^{15} \cdot 5^{2} \cdot 11^{6} \cdot 19 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.1 |
5B.4.1 |
$12540$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$9720000$ |
$2.352894$ |
$480705753733655/279172334592$ |
$1.08504$ |
$4.03208$ |
$[1, 0, 1, 577409, -10006702]$ |
\(y^2+xy+y=x^3+577409x-10006702\) |
5.12.0.a.1, 55.24.0-5.a.1.1, 228.2.0.?, 1140.24.1.?, 12540.48.1.? |
$[ ]$ |
344850.ej2 |
344850ej2 |
344850.ej |
344850ej |
$2$ |
$5$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 11^{2} \cdot 19 \) |
\( - 2^{10} \cdot 3^{15} \cdot 5^{8} \cdot 11^{6} \cdot 19 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.1 |
5B.4.1 |
$12540$ |
$48$ |
$1$ |
$4.634973593$ |
$1$ |
|
$2$ |
$48600000$ |
$3.157612$ |
$480705753733655/279172334592$ |
$1.08504$ |
$4.78941$ |
$[1, 1, 1, 14435237, -1250837719]$ |
\(y^2+xy+y=x^3+x^2+14435237x-1250837719\) |
5.12.0.a.1, 55.24.0-5.a.1.2, 228.2.0.?, 1140.24.1.?, 12540.48.1.? |
$[(2035, 190182)]$ |
418950.hm2 |
418950hm1 |
418950.hm |
418950hm |
$2$ |
$5$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 19 \) |
\( - 2^{10} \cdot 3^{21} \cdot 5^{2} \cdot 7^{6} \cdot 19 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.1 |
5B.4.1 |
$7980$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$20736000$ |
$2.676208$ |
$480705753733655/279172334592$ |
$1.08504$ |
$4.27116$ |
$[1, -1, 0, 2104443, 69434581]$ |
\(y^2+xy=x^3-x^2+2104443x+69434581\) |
5.12.0.a.1, 105.24.0.?, 228.2.0.?, 1140.24.1.?, 2660.24.0.?, $\ldots$ |
$[ ]$ |
418950.ov2 |
418950ov2 |
418950.ov |
418950ov |
$2$ |
$5$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 19 \) |
\( - 2^{10} \cdot 3^{21} \cdot 5^{8} \cdot 7^{6} \cdot 19 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.1 |
5B.4.1 |
$7980$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$103680000$ |
$3.480927$ |
$480705753733655/279172334592$ |
$1.08504$ |
$5.01710$ |
$[1, -1, 1, 52611070, 8731933697]$ |
\(y^2+xy+y=x^3-x^2+52611070x+8731933697\) |
5.12.0.a.1, 105.24.0.?, 228.2.0.?, 1140.24.1.?, 2660.24.0.?, $\ldots$ |
$[ ]$ |
433200.bs2 |
433200bs2 |
433200.bs |
433200bs |
$2$ |
$5$ |
\( 2^{4} \cdot 3 \cdot 5^{2} \cdot 19^{2} \) |
\( - 2^{22} \cdot 3^{15} \cdot 5^{8} \cdot 19^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.1 |
5B.4.1 |
$1140$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$311040000$ |
$4.124031$ |
$480705753733655/279172334592$ |
$1.08504$ |
$5.59877$ |
$[0, -1, 0, 689073792, 414291750912]$ |
\(y^2=x^3-x^2+689073792x+414291750912\) |
5.12.0.a.1, 30.24.0-5.a.1.2, 228.2.0.?, 380.24.0.?, 1140.48.1.? |
$[ ]$ |
433200.jy2 |
433200jy1 |
433200.jy |
433200jy |
$2$ |
$5$ |
\( 2^{4} \cdot 3 \cdot 5^{2} \cdot 19^{2} \) |
\( - 2^{22} \cdot 3^{15} \cdot 5^{2} \cdot 19^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.1 |
5B.4.1 |
$1140$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$62208000$ |
$3.319313$ |
$480705753733655/279172334592$ |
$1.08504$ |
$4.85475$ |
$[0, 1, 0, 27562952, 3325359188]$ |
\(y^2=x^3+x^2+27562952x+3325359188\) |
5.12.0.a.1, 30.24.0-5.a.1.1, 228.2.0.?, 380.24.0.?, 1140.48.1.? |
$[ ]$ |
481650.dw2 |
481650dw1 |
481650.dw |
481650dw |
$2$ |
$5$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 13^{2} \cdot 19 \) |
\( - 2^{10} \cdot 3^{15} \cdot 5^{2} \cdot 13^{6} \cdot 19 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.1 |
5B.4.1 |
$14820$ |
$48$ |
$1$ |
$1.207332121$ |
$1$ |
|
$2$ |
$13824000$ |
$2.436420$ |
$480705753733655/279172334592$ |
$1.08504$ |
$4.00573$ |
$[1, 0, 1, 806464, 16664078]$ |
\(y^2+xy+y=x^3+806464x+16664078\) |
5.12.0.a.1, 65.24.0-5.a.1.1, 228.2.0.?, 1140.24.1.?, 14820.48.1.? |
$[(5721, 435187)]$ |
481650.fh2 |
481650fh2 |
481650.fh |
481650fh |
$2$ |
$5$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 13^{2} \cdot 19 \) |
\( - 2^{10} \cdot 3^{15} \cdot 5^{8} \cdot 13^{6} \cdot 19 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.1 |
5B.4.1 |
$14820$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$69120000$ |
$3.241138$ |
$480705753733655/279172334592$ |
$1.08504$ |
$4.74372$ |
$[1, 1, 1, 20161612, 2083009781]$ |
\(y^2+xy+y=x^3+x^2+20161612x+2083009781\) |
5.12.0.a.1, 65.24.0-5.a.1.2, 228.2.0.?, 1140.24.1.?, 14820.48.1.? |
$[ ]$ |