Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy+y=x^3+x^2-1956088x-998219719\)
|
(homogenize, simplify) |
\(y^2z+xyz+yz^2=x^3+x^2z-1956088xz^2-998219719z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-2535090075x-46534912850250\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z/{2}\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(-955, 477)$ | $0$ | $2$ |
$(1605, -803)$ | $0$ | $2$ |
Integral points
\( \left(-955, 477\right) \), \( \left(1605, -803\right) \)
Invariants
Conductor: | $N$ | = | \( 2850 \) | = | $2 \cdot 3 \cdot 5^{2} \cdot 19$ |
|
Discriminant: | $\Delta$ | = | $49250078265600000000$ | = | $2^{14} \cdot 3^{10} \cdot 5^{8} \cdot 19^{4} $ |
|
j-invariant: | $j$ | = | \( \frac{52974743974734147769}{3152005008998400} \) | = | $2^{-14} \cdot 3^{-10} \cdot 5^{-2} \cdot 7^{3} \cdot 19^{-4} \cdot 103^{3} \cdot 5209^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.5315524527539117310718466553$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $1.7268334965368615437714669887$ |
|
||
$abc$ quality: | $Q$ | ≈ | $1.028954463439331$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $6.922999399866995$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
Mordell-Weil rank: | $r$ | = | $ 0$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
Real period: | $\Omega$ | ≈ | $0.12813413231169064976107934771$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 224 $ = $ ( 2 \cdot 7 )\cdot2\cdot2^{2}\cdot2 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $4$ |
|
Special value: | $ L(E,1)$ | ≈ | $1.7938778523636690966551108679 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) |
|
BSD formula
$$\begin{aligned} 1.793877852 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.128134 \cdot 1.000000 \cdot 224}{4^2} \\ & \approx 1.793877852\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 107520 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $14$ | $I_{14}$ | split multiplicative | -1 | 1 | 14 | 14 |
$3$ | $2$ | $I_{10}$ | nonsplit multiplicative | 1 | 1 | 10 | 10 |
$5$ | $4$ | $I_{2}^{*}$ | additive | 1 | 2 | 8 | 2 |
$19$ | $2$ | $I_{4}$ | nonsplit multiplicative | 1 | 1 | 4 | 4 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2Cs | 4.12.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 120 = 2^{3} \cdot 3 \cdot 5 \), index $48$, genus $0$, and generators
$\left(\begin{array}{rr} 3 & 2 \\ 38 & 119 \end{array}\right),\left(\begin{array}{rr} 61 & 2 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 31 & 2 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 23 & 116 \\ 46 & 111 \end{array}\right),\left(\begin{array}{rr} 117 & 4 \\ 116 & 5 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right)$.
The torsion field $K:=\Q(E[120])$ is a degree-$737280$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/120\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | split multiplicative | $4$ | \( 25 = 5^{2} \) |
$3$ | nonsplit multiplicative | $4$ | \( 950 = 2 \cdot 5^{2} \cdot 19 \) |
$5$ | additive | $18$ | \( 38 = 2 \cdot 19 \) |
$7$ | good | $2$ | \( 1425 = 3 \cdot 5^{2} \cdot 19 \) |
$19$ | nonsplit multiplicative | $20$ | \( 150 = 2 \cdot 3 \cdot 5^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2.
Its isogeny class 2850q
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
The minimal quadratic twist of this elliptic curve is 570d2, its twist by $5$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z \oplus \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{10}) \) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$4$ | \(\Q(\sqrt{6}, \sqrt{-10})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$4$ | \(\Q(i, \sqrt{15})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.0.3317760000.5 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
$8$ | deg 8 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$8$ | 8.2.5771493546750000.9 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 19 |
---|---|---|---|---|---|
Reduction type | split | nonsplit | add | ord | nonsplit |
$\lambda$-invariant(s) | 2 | 0 | - | 2 | 0 |
$\mu$-invariant(s) | 0 | 0 | - | 0 | 0 |
All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 11$ of good reduction are zero.
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.