Properties

Label 2850.g
Number of curves $4$
Conductor $2850$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("g1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 2850.g have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1 + T\)
\(5\)\(1\)
\(19\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 - 4 T + 7 T^{2}\) 1.7.ae
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(13\) \( 1 - 4 T + 13 T^{2}\) 1.13.ae
\(17\) \( 1 + 6 T + 17 T^{2}\) 1.17.g
\(23\) \( 1 - 6 T + 23 T^{2}\) 1.23.ag
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 2850.g do not have complex multiplication.

Modular form 2850.2.a.g

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} - q^{3} + q^{4} + q^{6} + 4 q^{7} - q^{8} + q^{9} - q^{12} + 4 q^{13} - 4 q^{14} + q^{16} - 6 q^{17} - q^{18} + q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 2850.g

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
2850.g1 2850e3 \([1, 1, 0, -10700, -430500]\) \(8671983378625/82308\) \(1286062500\) \([2]\) \(5184\) \(0.91022\)  
2850.g2 2850e4 \([1, 1, 0, -10450, -451250]\) \(-8078253774625/846825858\) \(-13231654031250\) \([2]\) \(10368\) \(1.2568\)  
2850.g3 2850e1 \([1, 1, 0, -200, 0]\) \(57066625/32832\) \(513000000\) \([2]\) \(1728\) \(0.36091\) \(\Gamma_0(N)\)-optimal
2850.g4 2850e2 \([1, 1, 0, 800, 1000]\) \(3616805375/2105352\) \(-32896125000\) \([2]\) \(3456\) \(0.70749\)