Properties

Label 284592.ia
Number of curves $2$
Conductor $284592$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("ia1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 284592.ia have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 - T\)
\(7\)\(1\)
\(11\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 5 T^{2}\) 1.5.a
\(13\) \( 1 + 4 T + 13 T^{2}\) 1.13.e
\(17\) \( 1 - 4 T + 17 T^{2}\) 1.17.ae
\(19\) \( 1 - 8 T + 19 T^{2}\) 1.19.ai
\(23\) \( 1 - 8 T + 23 T^{2}\) 1.23.ai
\(29\) \( 1 + 2 T + 29 T^{2}\) 1.29.c
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 284592.ia do not have complex multiplication.

Modular form 284592.2.a.ia

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} + q^{9} - 4 q^{13} + 4 q^{17} + 8 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 284592.ia

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
284592.ia1 284592ia2 \([0, 1, 0, -6893168, 4300557204]\) \(14553591673375/5208653241\) \(12963898580532289302528\) \([2]\) \(19660800\) \(2.9439\)  
284592.ia2 284592ia1 \([0, 1, 0, 1305792, 473282676]\) \(98931640625/96059601\) \(-239084244512179089408\) \([2]\) \(9830400\) \(2.5973\) \(\Gamma_0(N)\)-optimal