Properties

Label 281775bh
Number of curves $1$
Conductor $281775$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bh1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 281775bh1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(3\)\(1 + T\)
\(5\)\(1\)
\(13\)\(1 + T\)
\(17\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 - T + 2 T^{2}\) 1.2.ab
\(7\) \( 1 + 4 T + 7 T^{2}\) 1.7.e
\(11\) \( 1 + 5 T + 11 T^{2}\) 1.11.f
\(19\) \( 1 - 5 T + 19 T^{2}\) 1.19.af
\(23\) \( 1 + 3 T + 23 T^{2}\) 1.23.d
\(29\) \( 1 - 3 T + 29 T^{2}\) 1.29.ad
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 281775bh do not have complex multiplication.

Modular form 281775.2.a.bh

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} - q^{3} - q^{4} - q^{6} - 4 q^{7} - 3 q^{8} + q^{9} - 5 q^{11} + q^{12} - q^{13} - 4 q^{14} - q^{16} + q^{18} + 5 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 281775bh

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
281775.bh1 281775bh1 \([1, 1, 0, -1451220875, -60338385759750]\) \(-10730378053390609/43719326015625\) \(-1377154602800645032320556640625\) \([]\) \(467195904\) \(4.4684\) \(\Gamma_0(N)\)-optimal