Properties

Label 281775.q
Number of curves $1$
Conductor $281775$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("q1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 281775.q1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(3\)\(1 - T\)
\(5\)\(1\)
\(13\)\(1 + T\)
\(17\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 + T + 2 T^{2}\) 1.2.b
\(7\) \( 1 + 3 T + 7 T^{2}\) 1.7.d
\(11\) \( 1 - T + 11 T^{2}\) 1.11.ab
\(19\) \( 1 + 8 T + 19 T^{2}\) 1.19.i
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 + T + 29 T^{2}\) 1.29.b
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 281775.q do not have complex multiplication.

Modular form 281775.2.a.q

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{3} - q^{4} - q^{6} - 3 q^{7} + 3 q^{8} + q^{9} + q^{11} - q^{12} - q^{13} + 3 q^{14} - q^{16} - q^{18} - 8 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 281775.q

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
281775.q1 281775q1 \([1, 0, 0, -328888, -75538483]\) \(-417267265/19773\) \(-186434434311328125\) \([]\) \(3444480\) \(2.0766\) \(\Gamma_0(N)\)-optimal