Properties

Label 281775.g
Number of curves $1$
Conductor $281775$
CM no
Rank $2$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("g1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 281775.g1 has rank \(2\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(3\)\(1 - T\)
\(5\)\(1\)
\(13\)\(1 + T\)
\(17\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 + 2 T + 2 T^{2}\) 1.2.c
\(7\) \( 1 + 2 T + 7 T^{2}\) 1.7.c
\(11\) \( 1 + 3 T + 11 T^{2}\) 1.11.d
\(19\) \( 1 - 7 T + 19 T^{2}\) 1.19.ah
\(23\) \( 1 + 4 T + 23 T^{2}\) 1.23.e
\(29\) \( 1 + T + 29 T^{2}\) 1.29.b
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 281775.g do not have complex multiplication.

Modular form 281775.2.a.g

Copy content sage:E.q_eigenform(10)
 
\(q - 2 q^{2} + q^{3} + 2 q^{4} - 2 q^{6} - 2 q^{7} + q^{9} - 3 q^{11} + 2 q^{12} - q^{13} + 4 q^{14} - 4 q^{16} - 2 q^{18} + 7 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 281775.g

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
281775.g1 281775g1 \([0, 1, 1, -364508, 82308644]\) \(1186118904991744/36374479245\) \(164253507840703125\) \([]\) \(5087232\) \(2.0791\) \(\Gamma_0(N)\)-optimal