Properties

Label 28050d
Number of curves $2$
Conductor $28050$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("d1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 28050d have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1 + T\)
\(5\)\(1\)
\(11\)\(1 + T\)
\(17\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + 4 T + 7 T^{2}\) 1.7.e
\(13\) \( 1 + 3 T + 13 T^{2}\) 1.13.d
\(19\) \( 1 - T + 19 T^{2}\) 1.19.ab
\(23\) \( 1 + T + 23 T^{2}\) 1.23.b
\(29\) \( 1 - 7 T + 29 T^{2}\) 1.29.ah
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 28050d do not have complex multiplication.

Modular form 28050.2.a.d

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} - q^{3} + q^{4} + q^{6} + 2 q^{7} - q^{8} + q^{9} - q^{11} - q^{12} - 4 q^{13} - 2 q^{14} + q^{16} - q^{17} - q^{18} + 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 28050d

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
28050.o2 28050d1 \([1, 1, 0, -300, 1500]\) \(192100033/38148\) \(596062500\) \([2]\) \(12288\) \(0.40013\) \(\Gamma_0(N)\)-optimal
28050.o1 28050d2 \([1, 1, 0, -4550, 116250]\) \(666940371553/37026\) \(578531250\) \([2]\) \(24576\) \(0.74671\)