Properties

Label 28050.ck
Number of curves $4$
Conductor $28050$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("ck1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 28050.ck have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(3\)\(1 + T\)
\(5\)\(1\)
\(11\)\(1 - T\)
\(17\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + 7 T^{2}\) 1.7.a
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(23\) \( 1 + 8 T + 23 T^{2}\) 1.23.i
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 28050.ck do not have complex multiplication.

Modular form 28050.2.a.ck

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} - q^{3} + q^{4} - q^{6} + q^{8} + q^{9} + q^{11} - q^{12} + 2 q^{13} + q^{16} + q^{17} + q^{18} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 28050.ck

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
28050.ck1 28050ch4 \([1, 1, 1, -249713, 47925281]\) \(110211585818155849/993794670\) \(15528041718750\) \([2]\) \(221184\) \(1.6963\)  
28050.ck2 28050ch2 \([1, 1, 1, -15963, 707781]\) \(28790481449449/2549240100\) \(39831876562500\) \([2, 2]\) \(110592\) \(1.3498\)  
28050.ck3 28050ch1 \([1, 1, 1, -3463, -67219]\) \(293946977449/50490000\) \(788906250000\) \([2]\) \(55296\) \(1.0032\) \(\Gamma_0(N)\)-optimal
28050.ck4 28050ch3 \([1, 1, 1, 17787, 3340281]\) \(39829997144951/330164359470\) \(-5158818116718750\) \([2]\) \(221184\) \(1.6963\)