Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy=x^3-1526841x-694547379\)
|
(homogenize, simplify) |
\(y^2z+xyz=x^3-1526841xz^2-694547379z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-1978785963x-32398866156762\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(5679/4, -5679/8)$ | $0$ | $2$ |
Integral points
None
Invariants
Conductor: | $N$ | = | \( 27930 \) | = | $2 \cdot 3 \cdot 5 \cdot 7^{2} \cdot 19$ |
|
Discriminant: | $\Delta$ | = | $19485293154679327500$ | = | $2^{2} \cdot 3^{20} \cdot 5^{4} \cdot 7^{6} \cdot 19 $ |
|
j-invariant: | $j$ | = | \( \frac{3345930611358906241}{165622259047500} \) | = | $2^{-2} \cdot 3^{-20} \cdot 5^{-4} \cdot 11^{6} \cdot 19^{-1} \cdot 47^{3} \cdot 263^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.4604434624480681759568086505$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $1.4874883879204115234041322788$ |
|
||
$abc$ quality: | $Q$ | ≈ | $1.081271340032757$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $5.306956526682387$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
Mordell-Weil rank: | $r$ | = | $ 0$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
Real period: | $\Omega$ | ≈ | $0.13623333120410635016836828982$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 160 $ = $ 2\cdot( 2^{2} \cdot 5 )\cdot2\cdot2\cdot1 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
Special value: | $ L(E,1)$ | ≈ | $5.4493332481642540067347315928 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) |
|
BSD formula
$$\begin{aligned} 5.449333248 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.136233 \cdot 1.000000 \cdot 160}{2^2} \\ & \approx 5.449333248\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 1105920 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 5 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $2$ | $I_{2}$ | split multiplicative | -1 | 1 | 2 | 2 |
$3$ | $20$ | $I_{20}$ | split multiplicative | -1 | 1 | 20 | 20 |
$5$ | $2$ | $I_{4}$ | nonsplit multiplicative | 1 | 1 | 4 | 4 |
$7$ | $2$ | $I_0^{*}$ | additive | -1 | 2 | 6 | 0 |
$19$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 4.6.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 15960 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \cdot 19 \), index $48$, genus $0$, and generators
$\left(\begin{array}{rr} 7 & 6 \\ 15954 & 15955 \end{array}\right),\left(\begin{array}{rr} 2279 & 0 \\ 0 & 15959 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 15953 & 8 \\ 15952 & 9 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 288 & 15113 \\ 13993 & 2640 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 4 & 17 \end{array}\right),\left(\begin{array}{rr} 5419 & 5418 \\ 4858 & 8275 \end{array}\right),\left(\begin{array}{rr} 9577 & 9128 \\ 10948 & 4593 \end{array}\right),\left(\begin{array}{rr} 1688 & 11403 \\ 2765 & 9122 \end{array}\right),\left(\begin{array}{rr} 5321 & 9128 \\ 9884 & 4593 \end{array}\right)$.
The torsion field $K:=\Q(E[15960])$ is a degree-$183000209817600$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/15960\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | split multiplicative | $4$ | \( 931 = 7^{2} \cdot 19 \) |
$3$ | split multiplicative | $4$ | \( 9310 = 2 \cdot 5 \cdot 7^{2} \cdot 19 \) |
$5$ | nonsplit multiplicative | $6$ | \( 1862 = 2 \cdot 7^{2} \cdot 19 \) |
$7$ | additive | $26$ | \( 570 = 2 \cdot 3 \cdot 5 \cdot 19 \) |
$19$ | nonsplit multiplicative | $20$ | \( 1470 = 2 \cdot 3 \cdot 5 \cdot 7^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2 and 4.
Its isogeny class 27930cw
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
The minimal quadratic twist of this elliptic curve is 570i3, its twist by $-7$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{19}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$2$ | \(\Q(\sqrt{133}) \) | \(\Z/4\Z\) | not in database |
$2$ | \(\Q(\sqrt{7}) \) | \(\Z/4\Z\) | not in database |
$4$ | \(\Q(\sqrt{7}, \sqrt{19})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.0.462672528510976.7 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | deg 8 | \(\Z/8\Z\) | not in database |
$8$ | deg 8 | \(\Z/8\Z\) | not in database |
$8$ | deg 8 | \(\Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/12\Z\) | not in database |
$16$ | deg 16 | \(\Z/12\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 19 |
---|---|---|---|---|---|
Reduction type | split | split | nonsplit | add | nonsplit |
$\lambda$-invariant(s) | 5 | 1 | 2 | - | 0 |
$\mu$-invariant(s) | 0 | 0 | 0 | - | 0 |
All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 7$ of good reduction are zero.
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.