Properties

Label 278850.gy
Number of curves $4$
Conductor $278850$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("gy1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 278850.gy have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(3\)\(1 - T\)
\(5\)\(1\)
\(11\)\(1 + T\)
\(13\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + 4 T + 7 T^{2}\) 1.7.e
\(17\) \( 1 + 2 T + 17 T^{2}\) 1.17.c
\(19\) \( 1 + 4 T + 19 T^{2}\) 1.19.e
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 - 2 T + 29 T^{2}\) 1.29.ac
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 278850.gy do not have complex multiplication.

Modular form 278850.2.a.gy

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} + q^{3} + q^{4} + q^{6} - 4 q^{7} + q^{8} + q^{9} - q^{11} + q^{12} - 4 q^{14} + q^{16} - 2 q^{17} + q^{18} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 278850.gy

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
278850.gy1 278850gy3 \([1, 0, 0, -25797938, 50432004492]\) \(25176685646263969/57915000\) \(4367885050546875000\) \([2]\) \(18579456\) \(2.8202\)  
278850.gy2 278850gy2 \([1, 0, 0, -1630938, 768819492]\) \(6361447449889/294465600\) \(22208268879225000000\) \([2, 2]\) \(9289728\) \(2.4736\)  
278850.gy3 278850gy1 \([1, 0, 0, -278938, -41028508]\) \(31824875809/8785920\) \(662624339520000000\) \([2]\) \(4644864\) \(2.1271\) \(\Gamma_0(N)\)-optimal
278850.gy4 278850gy4 \([1, 0, 0, 904062, 2941314492]\) \(1083523132511/50179392120\) \(-3784474085927266875000\) \([2]\) \(18579456\) \(2.8202\)