Properties

Label 278850.g
Number of curves $4$
Conductor $278850$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("g1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 278850.g have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1 + T\)
\(5\)\(1\)
\(11\)\(1 - T\)
\(13\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + 4 T + 7 T^{2}\) 1.7.e
\(17\) \( 1 + 17 T^{2}\) 1.17.a
\(19\) \( 1 - 4 T + 19 T^{2}\) 1.19.ae
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 + 29 T^{2}\) 1.29.a
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 278850.g do not have complex multiplication.

Modular form 278850.2.a.g

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} - q^{3} + q^{4} + q^{6} - 4 q^{7} - q^{8} + q^{9} + q^{11} - q^{12} + 4 q^{14} + q^{16} - q^{18} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 278850.g

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
278850.g1 278850g4 \([1, 1, 0, -275366575, -1758726030875]\) \(30618029936661765625/3678951124992\) \(277462412510492352000000\) \([2]\) \(83607552\) \(3.5230\)  
278850.g2 278850g3 \([1, 1, 0, -15782575, -32232846875]\) \(-5764706497797625/2612665516032\) \(-197044334793326592000000\) \([2]\) \(41803776\) \(3.1764\)  
278850.g3 278850g2 \([1, 1, 0, -7607200, 4597978000]\) \(645532578015625/252306960048\) \(19028711023786356750000\) \([2]\) \(27869184\) \(2.9737\)  
278850.g4 278850g1 \([1, 1, 0, 1518800, 518656000]\) \(5137417856375/4510142208\) \(-340149921888348000000\) \([2]\) \(13934592\) \(2.6271\) \(\Gamma_0(N)\)-optimal