Properties

Label 27342.g
Number of curves $4$
Conductor $27342$
CM no
Rank $2$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("g1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 27342.g have rank \(2\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1\)
\(7\)\(1\)
\(31\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 2 T + 5 T^{2}\) 1.5.c
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(13\) \( 1 + 2 T + 13 T^{2}\) 1.13.c
\(17\) \( 1 + 6 T + 17 T^{2}\) 1.17.g
\(19\) \( 1 + 4 T + 19 T^{2}\) 1.19.e
\(23\) \( 1 + 8 T + 23 T^{2}\) 1.23.i
\(29\) \( 1 + 2 T + 29 T^{2}\) 1.29.c
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 27342.g do not have complex multiplication.

Modular form 27342.2.a.g

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{4} - 2 q^{5} - q^{8} + 2 q^{10} - 2 q^{13} + q^{16} - 6 q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 27342.g

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
27342.g1 27342q4 \([1, -1, 0, -145833, 21471911]\) \(3999236143617/62\) \(5317499502\) \([2]\) \(98304\) \(1.4142\)  
27342.g2 27342q3 \([1, -1, 0, -13533, -18901]\) \(3196010817/1847042\) \(158413627664082\) \([2]\) \(98304\) \(1.4142\)  
27342.g3 27342q2 \([1, -1, 0, -9123, 336545]\) \(979146657/3844\) \(329684969124\) \([2, 2]\) \(49152\) \(1.0676\)  
27342.g4 27342q1 \([1, -1, 0, -303, 10205]\) \(-35937/496\) \(-42539996016\) \([2]\) \(24576\) \(0.72104\) \(\Gamma_0(N)\)-optimal