Properties

Label 27200h
Number of curves $1$
Conductor $27200$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("h1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 27200h1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(5\)\(1\)
\(17\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + 2 T + 3 T^{2}\) 1.3.c
\(7\) \( 1 + 2 T + 7 T^{2}\) 1.7.c
\(11\) \( 1 + 6 T + 11 T^{2}\) 1.11.g
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(19\) \( 1 + 8 T + 19 T^{2}\) 1.19.i
\(23\) \( 1 - 6 T + 23 T^{2}\) 1.23.ag
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 27200h do not have complex multiplication.

Modular form 27200.2.a.h

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} - 2 q^{7} - 2 q^{9} - 4 q^{11} - q^{13} - q^{17} + q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 27200h

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
27200.s1 27200h1 \([0, -1, 0, -33, -20063]\) \(-2/85\) \(-174080000000\) \([]\) \(18432\) \(0.83579\) \(\Gamma_0(N)\)-optimal