Properties

Label 271062.f
Number of curves $2$
Conductor $271062$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("f1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 271062.f have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1\)
\(11\)\(1 + T\)
\(37\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 5 T^{2}\) 1.5.a
\(7\) \( 1 + 3 T + 7 T^{2}\) 1.7.d
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(17\) \( 1 - 7 T + 17 T^{2}\) 1.17.ah
\(19\) \( 1 + 7 T + 19 T^{2}\) 1.19.h
\(23\) \( 1 + 3 T + 23 T^{2}\) 1.23.d
\(29\) \( 1 + 2 T + 29 T^{2}\) 1.29.c
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 271062.f do not have complex multiplication.

Modular form 271062.2.a.f

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{4} - 3 q^{7} - q^{8} - q^{11} + 2 q^{13} + 3 q^{14} + q^{16} + 7 q^{17} - 7 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 7 \\ 7 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 271062.f

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
271062.f1 271062f2 \([1, -1, 0, -41959422, 104722673044]\) \(-5979677811120816625/6457751764992\) \(-8822989682603666178048\) \([]\) \(28449792\) \(3.1268\)  
271062.f2 271062f1 \([1, -1, 0, 55188, -54174560]\) \(13605635375/935384208\) \(-1277981179331476752\) \([]\) \(4064256\) \(2.1539\) \(\Gamma_0(N)\)-optimal