Show commands: SageMath
Rank
The elliptic curves in class 2695.c have rank \(0\).
L-function data
| Bad L-factors: |
| |||||||||||||||||||||||||||
| Good L-factors: |
| |||||||||||||||||||||||||||
| See L-function page for more information | ||||||||||||||||||||||||||||
Complex multiplication
The elliptic curves in class 2695.c do not have complex multiplication.Modular form 2695.2.a.c
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with LMFDB labels.
Elliptic curves in class 2695.c
| LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
|---|---|---|---|---|---|---|---|---|
| 2695.c1 | 2695a3 | \([1, -1, 0, -2900, -59375]\) | \(22930509321/6875\) | \(808836875\) | \([2]\) | \(1536\) | \(0.68729\) | |
| 2695.c2 | 2695a4 | \([1, -1, 0, -1430, 20691]\) | \(2749884201/73205\) | \(8612495045\) | \([2]\) | \(1536\) | \(0.68729\) | |
| 2695.c3 | 2695a2 | \([1, -1, 0, -205, -624]\) | \(8120601/3025\) | \(355888225\) | \([2, 2]\) | \(768\) | \(0.34072\) | |
| 2695.c4 | 2695a1 | \([1, -1, 0, 40, -85]\) | \(59319/55\) | \(-6470695\) | \([2]\) | \(384\) | \(-0.0058576\) | \(\Gamma_0(N)\)-optimal |