Properties

Label 267589a
Number of curves $1$
Conductor $267589$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("a1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 267589a1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(7\)\(1\)
\(43\)\(1 + T\)
\(127\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 + 2 T + 2 T^{2}\) 1.2.c
\(3\) \( 1 - T + 3 T^{2}\) 1.3.ab
\(5\) \( 1 - T + 5 T^{2}\) 1.5.ab
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(13\) \( 1 - 6 T + 13 T^{2}\) 1.13.ag
\(17\) \( 1 + 3 T + 17 T^{2}\) 1.17.d
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(23\) \( 1 + 4 T + 23 T^{2}\) 1.23.e
\(29\) \( 1 - 9 T + 29 T^{2}\) 1.29.aj
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 267589a do not have complex multiplication.

Modular form 267589.2.a.a

Copy content sage:E.q_eigenform(10)
 
\(q - 2 q^{2} + q^{3} + 2 q^{4} + q^{5} - 2 q^{6} - 2 q^{9} - 2 q^{10} + 2 q^{12} + 6 q^{13} + q^{15} - 4 q^{16} - 3 q^{17} + 4 q^{18} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 267589a

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
267589.a1 267589a1 \([0, 1, 1, -800, 8362]\) \(481890304/5461\) \(642481189\) \([]\) \(140616\) \(0.50353\) \(\Gamma_0(N)\)-optimal