Show commands: SageMath
Rank
The elliptic curves in class 26714.d have rank \(0\).
L-function data
| Bad L-factors: |
| ||||||||||||||||||||||||||||||
| Good L-factors: |
| ||||||||||||||||||||||||||||||
| See L-function page for more information | |||||||||||||||||||||||||||||||
Complex multiplication
The elliptic curves in class 26714.d do not have complex multiplication.Modular form 26714.2.a.d
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with LMFDB labels.
Elliptic curves in class 26714.d
| LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
|---|---|---|---|---|---|---|---|---|
| 26714.d1 | 26714g1 | \([1, 1, 0, -66070, -7162612]\) | \(-677993136625/75119768\) | \(-3534075666075608\) | \([]\) | \(207360\) | \(1.7209\) | \(\Gamma_0(N)\)-optimal |
| 26714.d2 | 26714g2 | \([1, 1, 0, 414060, 10218094]\) | \(166874624291375/97497603542\) | \(-4586860654022110502\) | \([]\) | \(622080\) | \(2.2702\) |