Properties

Label 26714.d
Number of curves $2$
Conductor $26714$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("d1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 26714.d have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(19\)\(1\)
\(37\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + T + 3 T^{2}\) 1.3.b
\(5\) \( 1 + 5 T^{2}\) 1.5.a
\(7\) \( 1 - 5 T + 7 T^{2}\) 1.7.af
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(13\) \( 1 + 5 T + 13 T^{2}\) 1.13.f
\(17\) \( 1 + 3 T + 17 T^{2}\) 1.17.d
\(23\) \( 1 - 3 T + 23 T^{2}\) 1.23.ad
\(29\) \( 1 - 3 T + 29 T^{2}\) 1.29.ad
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 26714.d do not have complex multiplication.

Modular form 26714.2.a.d

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} - q^{3} + q^{4} + q^{6} + 5 q^{7} - q^{8} - 2 q^{9} - q^{12} - 5 q^{13} - 5 q^{14} + q^{16} - 3 q^{17} + 2 q^{18} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 26714.d

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
26714.d1 26714g1 \([1, 1, 0, -66070, -7162612]\) \(-677993136625/75119768\) \(-3534075666075608\) \([]\) \(207360\) \(1.7209\) \(\Gamma_0(N)\)-optimal
26714.d2 26714g2 \([1, 1, 0, 414060, 10218094]\) \(166874624291375/97497603542\) \(-4586860654022110502\) \([]\) \(622080\) \(2.2702\)