Properties

Label 266560.dc
Number of curves $2$
Conductor $266560$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("dc1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 266560.dc have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(5\)\(1 + T\)
\(7\)\(1\)
\(17\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + 3 T^{2}\) 1.3.a
\(11\) \( 1 + 2 T + 11 T^{2}\) 1.11.c
\(13\) \( 1 + 13 T^{2}\) 1.13.a
\(19\) \( 1 + 6 T + 19 T^{2}\) 1.19.g
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 + 29 T^{2}\) 1.29.a
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 266560.dc do not have complex multiplication.

Modular form 266560.2.a.dc

Copy content sage:E.q_eigenform(10)
 
\(q - q^{5} - 3 q^{9} - 2 q^{11} - q^{17} - 6 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 266560.dc

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
266560.dc1 266560dc2 \([0, 0, 0, -12999308, 17985762032]\) \(7876916680687209/27200448800\) \(838888482634779852800\) \([2]\) \(8847360\) \(2.8780\)  
266560.dc2 266560dc1 \([0, 0, 0, -455308, 529531632]\) \(-338463151209/3731840000\) \(-115093600773079040000\) \([2]\) \(4423680\) \(2.5314\) \(\Gamma_0(N)\)-optimal