Show commands: SageMath
Rank
The elliptic curves in class 26640g have rank \(1\).
L-function data
| Bad L-factors: |
| |||||||||||||||||||||||||||
| Good L-factors: |
| |||||||||||||||||||||||||||
| See L-function page for more information | ||||||||||||||||||||||||||||
Complex multiplication
The elliptic curves in class 26640g do not have complex multiplication.Modular form 26640.2.a.g
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 26640g
| LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
|---|---|---|---|---|---|---|---|---|
| 26640.o4 | 26640g1 | \([0, 0, 0, -184503, 32184502]\) | \(-3721915550952016/243896484375\) | \(-45516937500000000\) | \([2]\) | \(202752\) | \(1.9490\) | \(\Gamma_0(N)\)-optimal |
| 26640.o3 | 26640g2 | \([0, 0, 0, -2997003, 1996997002]\) | \(3988023972023988004/15593765625\) | \(11640683664000000\) | \([2, 2]\) | \(405504\) | \(2.2955\) | |
| 26640.o2 | 26640g3 | \([0, 0, 0, -3042003, 1933934002]\) | \(2085187657182084002/124500749500125\) | \(185878622997690624000\) | \([2]\) | \(811008\) | \(2.6421\) | |
| 26640.o1 | 26640g4 | \([0, 0, 0, -47952003, 127808060002]\) | \(8167450100737631904002/124875\) | \(186437376000\) | \([2]\) | \(811008\) | \(2.6421\) |