Show commands: SageMath
Rank
The elliptic curves in class 2640r have rank \(1\).
L-function data
Bad L-factors: |
| ||||||||||||||||||||||||
Good L-factors: |
| ||||||||||||||||||||||||
See L-function page for more information |
Complex multiplication
The elliptic curves in class 2640r do not have complex multiplication.Modular form 2640.2.a.r
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 2640r
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
2640.n3 | 2640r1 | \([0, 1, 0, -22296, 1274004]\) | \(299270638153369/1069200\) | \(4379443200\) | \([2]\) | \(3840\) | \(1.0680\) | \(\Gamma_0(N)\)-optimal |
2640.n2 | 2640r2 | \([0, 1, 0, -22616, 1235220]\) | \(312341975961049/17862322500\) | \(73164072960000\) | \([2, 2]\) | \(7680\) | \(1.4146\) | |
2640.n1 | 2640r3 | \([0, 1, 0, -66616, -5083180]\) | \(7981893677157049/1917731420550\) | \(7855027898572800\) | \([2]\) | \(15360\) | \(1.7611\) | |
2640.n4 | 2640r4 | \([0, 1, 0, 16264, 5076564]\) | \(116149984977671/2779502343750\) | \(-11384841600000000\) | \([2]\) | \(15360\) | \(1.7611\) |