Properties

Label 2640.r
Number of curves $4$
Conductor $2640$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("r1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 2640.r have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 - T\)
\(5\)\(1 - T\)
\(11\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + 4 T + 7 T^{2}\) 1.7.e
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(17\) \( 1 + 2 T + 17 T^{2}\) 1.17.c
\(19\) \( 1 + 4 T + 19 T^{2}\) 1.19.e
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 + 2 T + 29 T^{2}\) 1.29.c
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 2640.r do not have complex multiplication.

Modular form 2640.2.a.r

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} + q^{5} - 4 q^{7} + q^{9} - q^{11} + 2 q^{13} + q^{15} - 2 q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 2640.r

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
2640.r1 2640l3 \([0, 1, 0, -10560, 414180]\) \(127191074376964/495\) \(506880\) \([2]\) \(2048\) \(0.73082\)  
2640.r2 2640l2 \([0, 1, 0, -660, 6300]\) \(124386546256/245025\) \(62726400\) \([2, 2]\) \(1024\) \(0.38425\)  
2640.r3 2640l4 \([0, 1, 0, -440, 10788]\) \(-9220796644/45106875\) \(-46189440000\) \([4]\) \(2048\) \(0.73082\)  
2640.r4 2640l1 \([0, 1, 0, -55, 8]\) \(1171019776/658845\) \(10541520\) \([2]\) \(512\) \(0.037675\) \(\Gamma_0(N)\)-optimal