Show commands: SageMath
                    
            
    Rank
The elliptic curves in class 2640.r have rank \(1\).
L-function data
| Bad L-factors: | 
 | ||||||||||||||||||||||||
| Good L-factors: | 
 | ||||||||||||||||||||||||
| See L-function page for more information | |||||||||||||||||||||||||
Complex multiplication
The elliptic curves in class 2640.r do not have complex multiplication.Modular form 2640.2.a.r
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with LMFDB labels.
Elliptic curves in class 2640.r
| LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality | 
|---|---|---|---|---|---|---|---|---|
| 2640.r1 | 2640l3 | \([0, 1, 0, -10560, 414180]\) | \(127191074376964/495\) | \(506880\) | \([2]\) | \(2048\) | \(0.73082\) | |
| 2640.r2 | 2640l2 | \([0, 1, 0, -660, 6300]\) | \(124386546256/245025\) | \(62726400\) | \([2, 2]\) | \(1024\) | \(0.38425\) | |
| 2640.r3 | 2640l4 | \([0, 1, 0, -440, 10788]\) | \(-9220796644/45106875\) | \(-46189440000\) | \([4]\) | \(2048\) | \(0.73082\) | |
| 2640.r4 | 2640l1 | \([0, 1, 0, -55, 8]\) | \(1171019776/658845\) | \(10541520\) | \([2]\) | \(512\) | \(0.037675\) | \(\Gamma_0(N)\)-optimal | 
