Properties

Label 263442.o
Number of curves $1$
Conductor $263442$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("o1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 263442.o1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1 - T\)
\(23\)\(1\)
\(83\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 - T + 5 T^{2}\) 1.5.ab
\(7\) \( 1 - 4 T + 7 T^{2}\) 1.7.ae
\(11\) \( 1 + 3 T + 11 T^{2}\) 1.11.d
\(13\) \( 1 + 6 T + 13 T^{2}\) 1.13.g
\(17\) \( 1 - 4 T + 17 T^{2}\) 1.17.ae
\(19\) \( 1 - 3 T + 19 T^{2}\) 1.19.ad
\(29\) \( 1 - 4 T + 29 T^{2}\) 1.29.ae
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 263442.o do not have complex multiplication.

Modular form 263442.2.a.o

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{3} + q^{4} + q^{5} - q^{6} + 4 q^{7} - q^{8} + q^{9} - q^{10} - 3 q^{11} + q^{12} - 6 q^{13} - 4 q^{14} + q^{15} + q^{16} + 4 q^{17} - q^{18} + 3 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 263442.o

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
263442.o1 263442o1 \([1, 0, 1, -4508, -352726]\) \(-68417929/322704\) \(-47771773523856\) \([]\) \(1012000\) \(1.3094\) \(\Gamma_0(N)\)-optimal