Show commands: SageMath
Rank
The elliptic curves in class 262080kr have rank \(0\).
L-function data
| Bad L-factors: |
| |||||||||||||||||||||
| Good L-factors: |
| |||||||||||||||||||||
| See L-function page for more information | ||||||||||||||||||||||
Complex multiplication
The elliptic curves in class 262080kr do not have complex multiplication.Modular form 262080.2.a.kr
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrrrr} 1 & 2 & 4 & 4 & 8 & 8 \\ 2 & 1 & 2 & 2 & 4 & 4 \\ 4 & 2 & 1 & 4 & 2 & 2 \\ 4 & 2 & 4 & 1 & 8 & 8 \\ 8 & 4 & 2 & 8 & 1 & 4 \\ 8 & 4 & 2 & 8 & 4 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 262080kr
| LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
|---|---|---|---|---|---|---|---|---|
| 262080.kr5 | 262080kr1 | \([0, 0, 0, -26472, -2165816]\) | \(-2748251600896/1124136195\) | \(-839163173022720\) | \([2]\) | \(1048576\) | \(1.5720\) | \(\Gamma_0(N)\)-optimal |
| 262080.kr4 | 262080kr2 | \([0, 0, 0, -458652, -119545904]\) | \(893359210685776/91298025\) | \(1090457767526400\) | \([2, 2]\) | \(2097152\) | \(1.9186\) | |
| 262080.kr3 | 262080kr3 | \([0, 0, 0, -493932, -100085456]\) | \(278944461825124/70849130625\) | \(3384869927362560000\) | \([2, 2]\) | \(4194304\) | \(2.2651\) | |
| 262080.kr1 | 262080kr4 | \([0, 0, 0, -7338252, -7651331984]\) | \(914732517663095044/9555\) | \(456497233920\) | \([2]\) | \(4194304\) | \(2.2651\) | |
| 262080.kr2 | 262080kr5 | \([0, 0, 0, -2761932, 1684376944]\) | \(24385137179326562/1284775885575\) | \(122762247613208985600\) | \([2]\) | \(8388608\) | \(2.6117\) | |
| 262080.kr6 | 262080kr6 | \([0, 0, 0, 1209588, -639079184]\) | \(2048324060764798/3031899609375\) | \(-289702519142400000000\) | \([2]\) | \(8388608\) | \(2.6117\) |